namitha issac - Academia.edu (original) (raw)
Papers by namitha issac
Monthly Notices of the Royal Astronomical Society, 2022
We present a comprehensive study of the gas kinematics associated with density structures at diff... more We present a comprehensive study of the gas kinematics associated with density structures at different spatial scales in the filamentary infrared dark cloud, G034.43+00.24 (G34). This study makes use of the H 13 CO + (1-0) molecular line data from the ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS) survey, which has spatial and velocity resolution of ∼ 0.04 pc and 0.2 km s −1 , respectively. Several tens of dendrogram structures have been extracted in the positionposition-velocity space of H 13 CO + , which include 21 small-scale leaves and 20 larger-scale branches. Overall, their gas motions are supersonic but they exhibit the interesting behavior where leaves tend to be less dynamically supersonic than the branches. For the larger-scale, branch structures, the observed velocity-size relation (i.e., velocity variation/dispersion versus size) are seen to follow the Larson scaling exponent while the smaller-scale, leaf structures show a systematic deviation and display a steeper slope. We argue that the origin of the observed kinematics of the branch structures is likely to be a combination of turbulence and gravity-driven ordered gas flows. In comparison, gravity-driven chaotic gas motion is likely at the level of small-scale leaf structures. The results presented in our previous paper and this current follow-up study suggest that the main driving mechanism for mass accretion/inflow observed in G34 varies at different spatial scales. We therefore conclude that a scale-dependent combined effect of turbulence and gravity is essential to explain the star-formation processes in G34.
Monthly Notices of the Royal Astronomical Society, 2022
We present a comprehensive study of the gas kinematics associated with density structures at diff... more We present a comprehensive study of the gas kinematics associated with density structures at different spatial scales in the filamentary infrared dark cloud, G034.43+00.24 (G34). This study makes use of the H13CO+ (1–0) molecular line data from the ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS) survey, which has spatial and velocity resolution of ∼0.04 pc and 0.2 km s−1, respectively. Several tens of dendrogram structures have been extracted in the position-position-velocity space of H13CO+, which include 21 small-scale leaves and 20 larger-scale branches. Overall, their gas motions are supersonic but they exhibit the interesting behaviour where leaves tend to be less dynamically supersonic than the branches. For the larger scale, branch structures, the observed velocity–size relation (i.e. velocity variation/dispersion versus size) are seen to follow the Larson scaling exponent while the smaller-scale, leaf structures show a systematic deviation and disp...
Monthly Notices of the Royal Astronomical Society, 2022
Monthly Notices of the Royal Astronomical Society, 2021
This paper presents a multiwavelength investigation of the Galactic H ii region IRAS 17149−3916. ... more This paper presents a multiwavelength investigation of the Galactic H ii region IRAS 17149−3916. Using the Giant Meterwave Radio Telescope, India, first low-frequency radio continuum observations at 610 and 1280 MHz for this region are presented. The ionized gas emission displays an interesting cometary morphology which is likely powered by the early type source, E4 (IRS-1). The origin of the cometary morphology is discussed under the framework of the widely accepted bow shock, champagne flow, and clumpy cloud mechanisms. The mid- and far-infrared data from Spitzer-GLIMPSE and Herschel-Hi-GAL reveal a complex network of pillars, clumps, bubble, filaments, and arcs suggesting the profound influence of massive stars on the surrounding medium. Triggered star formation at the tip of an observed pillar structure is reported. High-resolution ALMA continuum data show a string of cores detected within the identified clumps. The core masses are well explained by thermal Jeans fragmentation a...
Monthly Notices of the Royal Astronomical Society
We present compelling observational evidence of G133.50+9.01 being a bona fide cloud–cloud collis... more We present compelling observational evidence of G133.50+9.01 being a bona fide cloud–cloud collision candidate with signatures of induced filament, core, and cluster formation. The CO molecular line observations reveal that the G133.50+9.01 complex is made of two colliding molecular clouds with systemic velocities, rm−16.9\rm -16.9rm−16.9 and rm−14.1,km,s−1\rm -14.1\, km\, s^{-1}rm−14.1,km,s−1. The intersection of the clouds is characterized by broad bridging features characteristic of collision. The morphology of the shocked layer at the interaction front resembles an arc-like structure with enhanced excitation temperature and H2 column density. A complex network of filaments is detected in the Submillimeter Common-User Bolometer Array 2 850 rmmum\rm \mu mrmmum image with 14 embedded dense cores, all well correlated spatially with the shocked layer. A stellar cluster revealed through an overdensity of identified Classes I and II young stellar objects is found located along the arc in the intersection region corroborating with ...
Monthly Notices of the Royal Astronomical Society
The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, surve... more The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is prese...
Monthly Notices of the Royal Astronomical Society
We present a multiwavelength study of the extended green object, G12.42+0.50 in this paper. The a... more We present a multiwavelength study of the extended green object, G12.42+0.50 in this paper. The associated ionized, dust, and molecular components of this source are studied in detail employing various observations at near-, mid-and far-infrared, submillimeter and radio wavelengths. Radio continuum emission mapped at 610 and 1390 MHz, using the Giant Meterwave Radio Telescope, India, advocates for a scenario of coexistence of an UC H II region and an ionized thermal jet possibly powered by the massive young stellar object, IRAS 18079-1756 with an estimated spectral type of B1 − B0.5. Shock-excited lines of H 2 and [FeII], as seen in the near-infrared spectra obtained with UKIRT-UIST, lend support to this picture. Cold dust emission shows a massive clump of mass 1375 M enveloping G12.42+0.50. Study of the molecular gas kinematics using the MALT90 and JCMT archival data unravels the presence of both infall activity and large-scale outflow suggesting an early stage of massive star formation in G12.42+0.50. A network of filamentary features are also revealed merging with the massive clump mimicking a hub-filament layout. Velocity structure along these indicate bulk inflow motion.
Monthly Notices of the Royal Astronomical Society
A multiwavelength analysis of star formation associated with the extended green object, G19.88-0.... more A multiwavelength analysis of star formation associated with the extended green object, G19.88-0.53 is presented in this paper. With multiple detected radio and millimetre components, G19.88-0.53 unveils as harbouring a protocluster rather than a single massive young stellar object. We detect an ionized thermal jet using the upgraded Giant Meterwave Radio Telescope, India, which is found to be associated with a massive, dense and hot ALMA 2.7 mm core driving a bipolar CO outflow. Near-infrared spectroscopy with UKIRT–UIST shows the presence of multiple shock-excited H2 lines concurrent with the nature of this region. Detailed investigation of the gas kinematics using ALMA data reveals G19.88-0.53 as an active protocluster with high-mass star-forming components spanning a wide evolutionary spectrum from hot cores in accretion phase to cores driving multiple outflows to possible UCH ii regions.
Monthly Notices of the Royal Astronomical Society, 2022
We present a comprehensive study of the gas kinematics associated with density structures at diff... more We present a comprehensive study of the gas kinematics associated with density structures at different spatial scales in the filamentary infrared dark cloud, G034.43+00.24 (G34). This study makes use of the H 13 CO + (1-0) molecular line data from the ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS) survey, which has spatial and velocity resolution of ∼ 0.04 pc and 0.2 km s −1 , respectively. Several tens of dendrogram structures have been extracted in the positionposition-velocity space of H 13 CO + , which include 21 small-scale leaves and 20 larger-scale branches. Overall, their gas motions are supersonic but they exhibit the interesting behavior where leaves tend to be less dynamically supersonic than the branches. For the larger-scale, branch structures, the observed velocity-size relation (i.e., velocity variation/dispersion versus size) are seen to follow the Larson scaling exponent while the smaller-scale, leaf structures show a systematic deviation and display a steeper slope. We argue that the origin of the observed kinematics of the branch structures is likely to be a combination of turbulence and gravity-driven ordered gas flows. In comparison, gravity-driven chaotic gas motion is likely at the level of small-scale leaf structures. The results presented in our previous paper and this current follow-up study suggest that the main driving mechanism for mass accretion/inflow observed in G34 varies at different spatial scales. We therefore conclude that a scale-dependent combined effect of turbulence and gravity is essential to explain the star-formation processes in G34.
Monthly Notices of the Royal Astronomical Society, 2022
We present a comprehensive study of the gas kinematics associated with density structures at diff... more We present a comprehensive study of the gas kinematics associated with density structures at different spatial scales in the filamentary infrared dark cloud, G034.43+00.24 (G34). This study makes use of the H13CO+ (1–0) molecular line data from the ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS) survey, which has spatial and velocity resolution of ∼0.04 pc and 0.2 km s−1, respectively. Several tens of dendrogram structures have been extracted in the position-position-velocity space of H13CO+, which include 21 small-scale leaves and 20 larger-scale branches. Overall, their gas motions are supersonic but they exhibit the interesting behaviour where leaves tend to be less dynamically supersonic than the branches. For the larger scale, branch structures, the observed velocity–size relation (i.e. velocity variation/dispersion versus size) are seen to follow the Larson scaling exponent while the smaller-scale, leaf structures show a systematic deviation and disp...
Monthly Notices of the Royal Astronomical Society, 2022
Monthly Notices of the Royal Astronomical Society, 2021
This paper presents a multiwavelength investigation of the Galactic H ii region IRAS 17149−3916. ... more This paper presents a multiwavelength investigation of the Galactic H ii region IRAS 17149−3916. Using the Giant Meterwave Radio Telescope, India, first low-frequency radio continuum observations at 610 and 1280 MHz for this region are presented. The ionized gas emission displays an interesting cometary morphology which is likely powered by the early type source, E4 (IRS-1). The origin of the cometary morphology is discussed under the framework of the widely accepted bow shock, champagne flow, and clumpy cloud mechanisms. The mid- and far-infrared data from Spitzer-GLIMPSE and Herschel-Hi-GAL reveal a complex network of pillars, clumps, bubble, filaments, and arcs suggesting the profound influence of massive stars on the surrounding medium. Triggered star formation at the tip of an observed pillar structure is reported. High-resolution ALMA continuum data show a string of cores detected within the identified clumps. The core masses are well explained by thermal Jeans fragmentation a...
Monthly Notices of the Royal Astronomical Society
We present compelling observational evidence of G133.50+9.01 being a bona fide cloud–cloud collis... more We present compelling observational evidence of G133.50+9.01 being a bona fide cloud–cloud collision candidate with signatures of induced filament, core, and cluster formation. The CO molecular line observations reveal that the G133.50+9.01 complex is made of two colliding molecular clouds with systemic velocities, rm−16.9\rm -16.9rm−16.9 and rm−14.1,km,s−1\rm -14.1\, km\, s^{-1}rm−14.1,km,s−1. The intersection of the clouds is characterized by broad bridging features characteristic of collision. The morphology of the shocked layer at the interaction front resembles an arc-like structure with enhanced excitation temperature and H2 column density. A complex network of filaments is detected in the Submillimeter Common-User Bolometer Array 2 850 rmmum\rm \mu mrmmum image with 14 embedded dense cores, all well correlated spatially with the shocked layer. A stellar cluster revealed through an overdensity of identified Classes I and II young stellar objects is found located along the arc in the intersection region corroborating with ...
Monthly Notices of the Royal Astronomical Society
The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, surve... more The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is prese...
Monthly Notices of the Royal Astronomical Society
We present a multiwavelength study of the extended green object, G12.42+0.50 in this paper. The a... more We present a multiwavelength study of the extended green object, G12.42+0.50 in this paper. The associated ionized, dust, and molecular components of this source are studied in detail employing various observations at near-, mid-and far-infrared, submillimeter and radio wavelengths. Radio continuum emission mapped at 610 and 1390 MHz, using the Giant Meterwave Radio Telescope, India, advocates for a scenario of coexistence of an UC H II region and an ionized thermal jet possibly powered by the massive young stellar object, IRAS 18079-1756 with an estimated spectral type of B1 − B0.5. Shock-excited lines of H 2 and [FeII], as seen in the near-infrared spectra obtained with UKIRT-UIST, lend support to this picture. Cold dust emission shows a massive clump of mass 1375 M enveloping G12.42+0.50. Study of the molecular gas kinematics using the MALT90 and JCMT archival data unravels the presence of both infall activity and large-scale outflow suggesting an early stage of massive star formation in G12.42+0.50. A network of filamentary features are also revealed merging with the massive clump mimicking a hub-filament layout. Velocity structure along these indicate bulk inflow motion.
Monthly Notices of the Royal Astronomical Society
A multiwavelength analysis of star formation associated with the extended green object, G19.88-0.... more A multiwavelength analysis of star formation associated with the extended green object, G19.88-0.53 is presented in this paper. With multiple detected radio and millimetre components, G19.88-0.53 unveils as harbouring a protocluster rather than a single massive young stellar object. We detect an ionized thermal jet using the upgraded Giant Meterwave Radio Telescope, India, which is found to be associated with a massive, dense and hot ALMA 2.7 mm core driving a bipolar CO outflow. Near-infrared spectroscopy with UKIRT–UIST shows the presence of multiple shock-excited H2 lines concurrent with the nature of this region. Detailed investigation of the gas kinematics using ALMA data reveals G19.88-0.53 as an active protocluster with high-mass star-forming components spanning a wide evolutionary spectrum from hot cores in accretion phase to cores driving multiple outflows to possible UCH ii regions.