ronald coilparampil - Academia.edu (original) (raw)

Uploads

Papers by ronald coilparampil

Research paper thumbnail of Clinical investigation and management of Brucella suis seropositive dogs: A longitudinal case series

Journal of Veterinary Internal Medicine

Research paper thumbnail of Chlamydia pecorum Ovine Abortion: Associations between Maternal Infection and Perinatal Mortality

Pathogens, 2021

Chlamydia pecorum is a common gastrointestinal inhabitant of livestock but infections can manifes... more Chlamydia pecorum is a common gastrointestinal inhabitant of livestock but infections can manifest in a broad array of clinical presentations and in a range of host species. While C. pecorum is a known cause of ovine abortion, clinical cases have only recently been described in detail. Here, the prevalence and sequence types (STs) of C. pecorum in ewes from a property experiencing high levels of perinatal mortality (PNM) in New South Wales (NSW), Australia, were investigated using serological and molecular methods. Ewes that were PNM+ were statistically more likely to test seropositive compared to PNM− ewes and displayed higher antibody titres; however, an increase in chlamydial shedding from either the rectum, vagina or conjunctiva of PNM+ ewes was not observed. Multilocus sequence typing (MLST) indicated that C. pecorum ST23 was the major ST shed by ewes in the flock, was the only ST identified from the vaginal site, and was the same ST detected within aborted foetal tissues. Whol...

Research paper thumbnail of Describing the within laboratory and between laboratory agreement of a serum ELISA in a national laboratory network

Preventive Veterinary Medicine, 2012

Research paper thumbnail of Evaluation of three immunological assays to mitigate the risk of transboundary spread of Coxiella burnetii by alpacas

Transboundary and Emerging Diseases, 2021

Coxiella burnetii causes coxiellosis in animals and Q fever in humans, a potentially debilitating... more Coxiella burnetii causes coxiellosis in animals and Q fever in humans, a potentially debilitating zoonotic disease commonly transmitted through domestic ruminants. To prevent transboundary spread of C. burnetii, animals may be tested prior to export. In alpacas, this process is complicated by the lack of scientific evidence for C. burnetii infection in the species, and the unique composition of camelid antibodies, which may cause false-positive results in assays developed for ruminants. We evaluated a complement fixation test (CFT; currently recommended for alpacas in New Zealand), an enzyme linked immunosorbent assay (ELISA), and an immunofluorescence assay (IFA). Positive analytical control samples were generated through vaccination of alpacas with a human Q fever vaccine, whereas negative analytical control samples were sourced from New Zealand (deemed free of C. burnetii). Immunological assays were conducted on 131 alpaca sera submitted for export testing. Test characteristics (sensitivity, specificity, positive and negative predictive values) for CFT, ELISA and IFA were determined using Bayesian latent class analysis. Due to anticomplementary activity, 37 (28.2%) of the CFT results were inconclusive, making CFT unsuitable for routine use. Of the remaining 94 samples, 10.6%, 0% and 7.4% were positive for C. burnetii antibodies based on CFT, ELISA and IFA, respectively, yielding estimated sensitivities of 58%, 26% and 78%, and estimated specificities of 95%, 98% and 95%, with the estimates for sensitivity being imprecise, as evidenced by wide 95% credible intervals. Positive predictive values were similar across assays, albeit very low at the estimated seroprevalence of 5%. Our results indicate that, of the tests available, IFA appears to be the most appropriate for use in alpacas. Higher sensitivity of antibody detection, use of antigen detection assays, and availability of samples from individuals with evidence of infection could provide additional insight into the risk of transboundary spread of C. burnetii by alpacas.

Research paper thumbnail of Clinical investigation and management of Brucella suis seropositive dogs: A longitudinal case series

Journal of Veterinary Internal Medicine

Research paper thumbnail of Chlamydia pecorum Ovine Abortion: Associations between Maternal Infection and Perinatal Mortality

Pathogens, 2021

Chlamydia pecorum is a common gastrointestinal inhabitant of livestock but infections can manifes... more Chlamydia pecorum is a common gastrointestinal inhabitant of livestock but infections can manifest in a broad array of clinical presentations and in a range of host species. While C. pecorum is a known cause of ovine abortion, clinical cases have only recently been described in detail. Here, the prevalence and sequence types (STs) of C. pecorum in ewes from a property experiencing high levels of perinatal mortality (PNM) in New South Wales (NSW), Australia, were investigated using serological and molecular methods. Ewes that were PNM+ were statistically more likely to test seropositive compared to PNM− ewes and displayed higher antibody titres; however, an increase in chlamydial shedding from either the rectum, vagina or conjunctiva of PNM+ ewes was not observed. Multilocus sequence typing (MLST) indicated that C. pecorum ST23 was the major ST shed by ewes in the flock, was the only ST identified from the vaginal site, and was the same ST detected within aborted foetal tissues. Whol...

Research paper thumbnail of Describing the within laboratory and between laboratory agreement of a serum ELISA in a national laboratory network

Preventive Veterinary Medicine, 2012

Research paper thumbnail of Evaluation of three immunological assays to mitigate the risk of transboundary spread of Coxiella burnetii by alpacas

Transboundary and Emerging Diseases, 2021

Coxiella burnetii causes coxiellosis in animals and Q fever in humans, a potentially debilitating... more Coxiella burnetii causes coxiellosis in animals and Q fever in humans, a potentially debilitating zoonotic disease commonly transmitted through domestic ruminants. To prevent transboundary spread of C. burnetii, animals may be tested prior to export. In alpacas, this process is complicated by the lack of scientific evidence for C. burnetii infection in the species, and the unique composition of camelid antibodies, which may cause false-positive results in assays developed for ruminants. We evaluated a complement fixation test (CFT; currently recommended for alpacas in New Zealand), an enzyme linked immunosorbent assay (ELISA), and an immunofluorescence assay (IFA). Positive analytical control samples were generated through vaccination of alpacas with a human Q fever vaccine, whereas negative analytical control samples were sourced from New Zealand (deemed free of C. burnetii). Immunological assays were conducted on 131 alpaca sera submitted for export testing. Test characteristics (sensitivity, specificity, positive and negative predictive values) for CFT, ELISA and IFA were determined using Bayesian latent class analysis. Due to anticomplementary activity, 37 (28.2%) of the CFT results were inconclusive, making CFT unsuitable for routine use. Of the remaining 94 samples, 10.6%, 0% and 7.4% were positive for C. burnetii antibodies based on CFT, ELISA and IFA, respectively, yielding estimated sensitivities of 58%, 26% and 78%, and estimated specificities of 95%, 98% and 95%, with the estimates for sensitivity being imprecise, as evidenced by wide 95% credible intervals. Positive predictive values were similar across assays, albeit very low at the estimated seroprevalence of 5%. Our results indicate that, of the tests available, IFA appears to be the most appropriate for use in alpacas. Higher sensitivity of antibody detection, use of antigen detection assays, and availability of samples from individuals with evidence of infection could provide additional insight into the risk of transboundary spread of C. burnetii by alpacas.