Uwe Schleiff - Academia.edu (original) (raw)
Books by Uwe Schleiff
ABSTRACT Handbook for the ‘Salinity and Soil Fertility Kit’. A portable field lab for soil, wate... more ABSTRACT
Handbook for the ‘Salinity and Soil Fertility Kit’. A portable field lab for soil, water and plant analysis. Uwe Schleiff; self-published; 168 p.; ISBN 3-00-016639-4;
Copies can be ordered from the order form of the following homepage: http://www.salinity.de
The handbook is the result of many years of field experience in the application of rapid chemical test-kits for testing important parameters on soil fertility (salinity, alkalinity, pH, nutrients, EC, CEC, ESP, Cl, gypsum, carbonate etc.), quality of irrigation-, ground- and drainage waters (EC and ECeff., SAR and SARMg-adj. etc.) and nutrient status of plants (N, P, K) in irrigated and salt-affected agriculture and environment in developing countries. Rapid chemical field tests and calculation procedures required for identification and/or monitoring of chemical parameters relevant in saline environments and irrigated agriculture for plants/crops differing in their salt tolerances are presented. More than 100 tables and figures are offered for data evaluation with respect to crop production and environment protection. Special attention is given to Mg-salinity and the urgent need for a separate evaluation of soil osmotic and soil matric water potentials on plant water supply and plant growth. In addition a general concept on the contribution of the rhizospheric soil for the salt tolerance of plants is presented (horizontal salt distribution around roots within irrigation cycles and root morphology). The handbook addresses to agronomists, soil chemists, irrigation engineers and environmentalists involved in the preparation and implementation, monitoring and evaluation of irrigated areas opposed to salt-affected soils, saline/brackish waters and environments. For more information, please visit the homepage, which offers an expanded list of contents including tables and figures.
Price per copy: EUR 190.00 plus packing and postage.
Orders to: see below or email: schleiff@salinity.de
Papers by Uwe Schleiff
Irrigation and Agricultural Development, 1980
In der Sibari-Ebene/Sueditalien verursacht das oberhalb der kritischen Grundwassertiefe stehende ... more In der Sibari-Ebene/Sueditalien verursacht das oberhalb der kritischen Grundwassertiefe stehende natrium- und magnesiumsalzreiche Grundwasser eine Versalzung der Wurzelzone des Bodens, die in landwirtschaftlichen Kulturbestaenden zu fleckenweisem Auftreten von Salzschaeden fuehren. Als Beitrag zur Aufklaerung der Schadursachen von Natrium- und Magnesiumsalzen an Weizen im Felde und Mais im Gewaechshausversuch wurde neben Bodendaten der Mineralstoffzustand der Pflanzen herangezogen. Zunehmende Bodenversalzung senkte die Kaliumgehalte der Weizenpflanzen waehrend des Schossens unter der vorlaeufigen Ertragsgrenzwert von 30 %o, obwohl die pflanzenverfuegbaren Kalium-Gehalte des Bodens auch bei schlechtem Wachstum verglichen mit salzarmen Standorten als ausreichend einzustufen sind. Der fuer die Wasseraufnahme der Pflanzen wichtige Kationengehalt im Spross sank bei geringem Kalium-Angebot durch Na-Salinitaet bis unter 1 mval/g TS, betrug bei hohem K-Angebot aber 1,7 mval/g TS, ohne die P...
Zugleich: Kiel, Univ., Agrarwiss. Fak., Diss. 1973.
Motto: better approximately correct and in time – than more exact and too late
In the past decades crop salt tolerance research focussed mainly on two important aspects: (a) st... more In the past decades crop salt tolerance research focussed mainly on two important aspects: (a) study of the effects of vertical salt distribution in the rooted soil layer on crop salt tolerance, which is applied to manage crop growth on saline soils, (b) and to understand biochemical and physiological effects of salinity on plants at cell, tissue, organ and whole plant level as basic information to develop more salt tolerant plants. Unfortunately most biochemical and physiological findings were little relevant to improve plant growth under saline soils conditions. The objective of this paper is to point out an aspect that was rarely considered in the past decades, it is the effect of the transpiration driven lateral salt distribution around roots on crop salt tolerance. It is supposed that root morphology is a most important feature, which affects the process of salt accumulation around roots and thus water uptake from saline soils. Shoot transpiration causes a much steeper increase...
Introduction & Objective In arid and semi-arid areas there is an increasing pressure on agricultu... more Introduction & Objective In arid and semi-arid areas there is an increasing pressure on agriculture, horticulture and landscape greening to apply brackish irrigation waters and to cultivate salt-affected land. It is also evident that for most plants/crops growth conditions in saline environments are critical and even many halophytes may suffer seriously at soil salinity levels exceeding 1% or 2%. On the other hand soil salinity may vary at small scales and in short terms. In any case it is a significant advantage for a professional 'salinity' management to acquire relevant salinity and related soil fertility data on-site and real-time. The presented portable field laboratory 'SALINITY & SOIL FERTILITY KIT' offers a set of useful tests needed for a quantitative appraisal of growth conditions for plants in saline environments. The tests are based on field experience in projects from South America, Africa, Asia, Europe and Near East. Full Measurement Programme The full ...
http://www.salinity.de Introduction & Objective On saline soils water supply is the most critical... more http://www.salinity.de Introduction & Objective On saline soils water supply is the most critical growth factor limiting plant growth and crop salt tolerance. However, the process of water uptake by roots is far from being understood. The present concept (USDA, FAO) on crop salt tolerance rating and brackish/saline water irrigation considers the effect of vertical distribution of salts in the rooted soil layer only, resulting in practical recommendations (lea-ching requirements) to control salinity of the rooted soil layer at a crop-specific level (Fig.2, left-hand). References: SCHLEIFF U., 2012: Mechanistic approach to understand salt tolerance of irrigated crops. Work-shop der DBG Kommission I: Messung, Monitoring und Modellierung von Prozessen im System Boden-Pflanze-Atmosphaere; UFZ Leipzig: www.salinity.de. SCHLEIFF U., 2013: Soil-based vegetation technique to quantify effects of rhizospheric soil osmotic and matric water potentials on crop salt tolerance. J. Agronomy
One promising strategy to combat agricultural losses caused by increasing soil salinity is the de... more One promising strategy to combat agricultural losses caused by increasing soil salinity is the development of crops that are more tolerant to saline growth conditions. In the past decades research of plant salt tolerance focussed on the understanding of biochemical and physiological mechanism mainly happening inside organs of plants differing in their salt tolerance and growing under well-controlled soil-less conditions. This approach expanded our knowledge on hundreds of metabolic processes and detrimental effects significantly, but unfortunately most results did not contribute to improve salt tolerance of field-grown crops. Assuming that the cultivation of plants under hydroponic conditions was a major limitation, the focus of the presented approach to is soil-based. The classical concept of crop salt tolerance rating applied in irrigated agriculture is also soil-based, but considers only the vertical distribution of salts in the rooted soil layer, which results from controlled application of brackish waters. However, this concept does not consider that transpiration during periods of water depletion causes a separation of soil salinity between the rhizospheric soil volume occupied by roots and root hairs and the soil volume outside the rhizocylinder, the bulk soil. Basically, plant transpiration and exclusion of salts from root uptake divide the rooted soil layer into three fractions: (a) the rhizospheric soil, where soil meets root and where root water uptake and salt exclusion affect a build-up of soil water salinity, (2) the bulk soil, where soil water salinity is rarely affected, and (3) a transition zone between. Roots differ greatly in their ability to resist increasing soil water salinity and to form rhizospheric soil volumes. Pot experiments have shown that water uptake from soils of the same soil water salinity was about 350% higher by young rape plants (large rhizocylinder) as compared to young leek plants (small rhizocylinder). The results indicate a strong evidence that there is a strong relationship between root water uptake from saline soils and the soil volume directly affected by roots, the rhizocylinder. It is concluded that root morphology plays an important role for the salt tolerance of soil-grown crops. A model calculation shows the potential to improve salt tolerance of maize by modification of root morphology.
Abstract One promising strategy to combat agricultural losses caused by increasing soil salinity... more Abstract
One promising strategy to combat agricultural losses caused by increasing soil salinity is the development of crops that are more tolerant to saline growth conditions. In the past decades research of plant salt tolerance focussed on the understanding of biochemical and physiological mechanism mainly happening inside organs of plants differing in their salt tolerance and growing under well-controlled soil-less conditions. This approach expanded our knowledge on hundreds of metabolic processes and detrimental effects significantly, but unfortunately most results did not contribute to improve salt tolerance of field-grown crops. Assuming that the cultivation of plants under hydroponic conditions was a major limitation, the focus of the presented approach to is soil-based. The classical concept of crop salt tolerance rating applied in irrigated agriculture is also soil-based, but considers only the vertical distribution of salts in the rooted soil layer, which results from controlled application of brackish waters. However, this concept does not consider that transpiration during periods of water depletion causes a separation of soil salinity between the rhizospheric soil volume occupied by roots and root hairs and the soil volume outside the rhizocylinder, the bulk soil. Basically, plant transpiration and exclusion of salts from root uptake divide the rooted soil layer into three fractions: (a) the rhizospheric soil, where soil meets root and where root water uptake and salt exclusion affect a build-up of soil water salinity, (2) the bulk soil, where soil water salinity is rarely affected, and (3) a transition zone between. Roots differ greatly in their ability to resist increasing soil water salinity and to form rhizospheric soil volumes. Pot experiments have shown that water uptake from soils of the same soil water salinity was about 350% higher by young rape plants (large rhizocylinder) as compared to young leek plants (small rhizocylinder). The results indicate a strong evidence that there is a strong relationship between root water uptake from saline soils and the soil volume directly affected by roots, the rhizocylinder. It is concluded that root morphology plays an important role for the salt tolerance of soil-grown crops. A model calculation shows the potential to improve salt tolerance of maize by modification of root morphology.
Journal of Plant Nutrition and Soil Science, 1982
Wenn Pflanzen aus Salzböden Wasser aufnehmen, reichern sich die zur Wurzeloberfläche verlagerten ... more Wenn Pflanzen aus Salzböden Wasser aufnehmen, reichern sich die zur Wurzeloberfläche verlagerten Salze in der wurzelnahen Bodenlösung an. Die in ihr gelösten Salze erniedrigen das osmotische Potential gegenüber der wurzelferneren Bodenlösung um ein Vielfaches. Dadurch wird die Wasseraufnahmerate der Wurzeln beeinträchtigt. Sprosse junger Zuckerrüben, deren Wurzel system von einer wurzelnahen Bodenlösung mit Ψ-Werten von –0,5 bis – 2,0 MPa umgeben war, transpirierten etwa 3,0 bzw. 1,0 ml/h/g TS Sproßgewicht. Aus Bodenlösungen von – 2,5 bis – 3,0 MPa erfolgte keine nennenswerte Wasseraufnahme. Es wird angenommen, daß Ψ-Werte dieser Größenordnung nur in der wurzelnahen Bodenlösung solcher Wurzeln möglich sind, deren Sprosse bereits stark salzadaptiert sind. Der Ψ-Wert der wurzelnahen Bodenlösung in einem sandigen Boden, der die Wasseraufnahme der Wurzel unterbindet, wurde kaum vom Wassergehalt des Bodens beeinträchtigt.Water uptake of young sugar beets in relation to the salt concentration of the rhizospheric soil solutionWhen plants absorb soil water from saline soils salts translocated to the roots surface accumulate in the soil solution close to the roots. Due to the salt dissolved in the rhizospheric soil solution its osmotic potential is several times lower than the osmotic potential of the soil solution far from the roots thus affecting their water uptake. Shoots of young sugar beets transpired about 3,0 resp. 1 ml/h/g shoot dry matter, when the roots were surrounded by soil solutions of –0,5 MPa resp. –2,0 MPa. There was nearly no water, uptake from soil solutions of –2,5 to –3,0 MPa. Ψ-values of this range are supposed to occur only around roots of highly salt adapted sugar beets. In a wide range the water content of a sandy soil did not affect the Ψ-value preventing water uptake.
Journal of Plant Nutrition and Soil Science, 1987
Es wird eine Vegetationstechnik zur quantitativen Bestimmung der Wasseraufnahmerate durch Wurzeln... more Es wird eine Vegetationstechnik zur quantitativen Bestimmung der Wasseraufnahmerate durch Wurzeln, die unterschiedlichen Kombinationen des matrischen und osmotischen Wasserpotentials des wurzelnahen Bodens (Rhizobodens) ausgesetzt sind, vorgestellt. Die Vegetationstechnik besteht im Kern aus zwei Wachstumsabschnitten, einer Anzucht- und einer Versuchsphase. Ziel der Anzuchtphase ist es, eine Anzahl einheitlicher Versuchspflanzen in bodengefüllten Gefäßen durch genau kontrollierte Wasserdosierung anzuziehen, bis der Boden so intensiv durchwurzelt ist, daß er insgesamt als Rhizoboden angesehen werden kann. Die Versuchsphase wird eingeleitet, indem der Boden bis auf Feldkapazität gebracht wird. Dem Gießwasser werden unterschiedliche Salzmengen zugegeben, so daß die Pflanzenwurzeln nun einem einheitlich hohen matrischen Wasserpotential, aber unterschiedlichen osmotischen Wasserpotentialen ausgesetzt sind. Anschließend werden die Pflanzen für ein bis drei Tage konstanten Klimabedingungen ausgesetzt und der Transpirationswasserverlust gravimetrisch in kurzen Zeitabständen erfaßt. Aus den Wägungen kann rechnerisch auf den Verlauf des matrischen, osmotischen und Gesamtwasserpotentials des Rhizobodens, die Wasseraufnahmerate der Wurzeln, die Transpirations- und Wachstumsrate der Sprosse geschlossen werden.A vegetation technique to study the water uptake by roots from salinized rhizospheric soilsThe paper presents a vegetation technique to study the water uptake rate by roots, which are exposed to rhizospheric soils (soil in close vicinity of roots) of different combinations of soil osmotic and soil matrix water potential. The vegetation technique consists of two growth periods, a period of preculture and an experimental period. The aim of the preculture is to obtain series of homogenous plants growing each in a small pot filled with a densely rooted soil. At the end of the preculture all plants are very similar with respect to shoot and root development.The aim of the experimental period is to study the effects of various combinations of soil osmotic and matrix water potential on the water supply of plants. Thus the experimental period starts with supplying all pots with the same amount of water up to field capacity. In order to obtain different osmotic water potentials of the soil solutions, the water is differently salinized. Then the plants are exposed to constant climatical growth conditions. During the following days the water loss of the pots is determined hourly. The development of the matrix, osmotic and total soil water potential, the water uptake rate of the roots, the transpiration rate and growth rate of the shoots can be calculated from the water losses.
Journal of Plant Nutrition and Soil Science, 1987
During periods of water depletion the water supply of plants from saline soils is reduced due to ... more During periods of water depletion the water supply of plants from saline soils is reduced due to the simultaneous decrease of the soil osmotic and the soil matric water potential. Common models on the water uptake from saline soils assume a similar depressing effect of osmotic and matric water potentials on the water uptake by plants. As plants differ in their ability to overcome salt stress and soils differ in their water retention curves there is some doubt for the general validity of this assumption. The paper presents results of an experiment with rape grown in a sandy and a silty soil at three salinity levels. The transpiration rate of the plants was determined during a period of 34 hours and related to the total water potential of the two soils. In case of the silty soil, the transpiration was related to the total soil water potential at all salinity levels. In the sandy soil, however, the transpiration was much more affected by decreasing soil matric potential than by equivalent decreases of the soil osmotic potential. The results show that the effect of both potentials on the water supply of plants is not the same and has to be treated separately.Vergleich der Transpirationsraten junger Rapspflanzen auf versalzten Böden unterschiedlicher TexturIm Verlaufe des Wasserentzuges auf versalzten Böden nimmt die Wasserversorgung von Pflanzen wegen simultan sinkender osmotischer und matrischer Bodenwasserpotentiale ab. Verbreitete Modelle, die die Wasseraufnahme aus versalzten Böden beschreiben, legen eine quantitativ gleiche Wirkung abnehmender osmotischer und matrischer Wasserpotentiale auf die Wasseraufnahme durch Pflanzen zugrunde. Da Pflanzen sich in ihrer Salztoleranz unterscheiden und Böden unterschiedliche pF-Kurven haben, sind Zweifel an der Allgemeingültigkeit dieser Annahme angebracht. Es werden Versuchsergebnisse mit Raps vorgestellt, der in einem sandigen und einem schluffigen Boden bei drei Versalzungsstufen aufwuchs. Die Transpirationsrate der Pflanzen wurde innerhalb eines Zeitraumes von 34 Stunden gemessen und auf das Gesamt-wasserpotential der Böden bezogen. Im Schluffboden wurde bei allen Versalzungsstufen eine gute Beziehung zwischen dem Gesamtwasserpotential des Bodens und der Transpiration der Pflanzen gefunden. Im sandigen Boden wurde die Transpiration jedoch wesentlich stärker durch die Abnahme im Matrixpotential als durch äquivalente Abnahmen des osmotischen Potentials beeinträchtigt. Die Ergebnisse zeigen, daß beide Potentiale grundsätzlich unter-schiedlich auf die Wasserversorgung der Pflanzen wirken und deshalb eine getrennte Bewertung vorgenommen werden sollte.
Agricultural Water Management, 1981
ABSTRACT Handbook for the ‘Salinity and Soil Fertility Kit’. A portable field lab for soil, wate... more ABSTRACT
Handbook for the ‘Salinity and Soil Fertility Kit’. A portable field lab for soil, water and plant analysis. Uwe Schleiff; self-published; 168 p.; ISBN 3-00-016639-4;
Copies can be ordered from the order form of the following homepage: http://www.salinity.de
The handbook is the result of many years of field experience in the application of rapid chemical test-kits for testing important parameters on soil fertility (salinity, alkalinity, pH, nutrients, EC, CEC, ESP, Cl, gypsum, carbonate etc.), quality of irrigation-, ground- and drainage waters (EC and ECeff., SAR and SARMg-adj. etc.) and nutrient status of plants (N, P, K) in irrigated and salt-affected agriculture and environment in developing countries. Rapid chemical field tests and calculation procedures required for identification and/or monitoring of chemical parameters relevant in saline environments and irrigated agriculture for plants/crops differing in their salt tolerances are presented. More than 100 tables and figures are offered for data evaluation with respect to crop production and environment protection. Special attention is given to Mg-salinity and the urgent need for a separate evaluation of soil osmotic and soil matric water potentials on plant water supply and plant growth. In addition a general concept on the contribution of the rhizospheric soil for the salt tolerance of plants is presented (horizontal salt distribution around roots within irrigation cycles and root morphology). The handbook addresses to agronomists, soil chemists, irrigation engineers and environmentalists involved in the preparation and implementation, monitoring and evaluation of irrigated areas opposed to salt-affected soils, saline/brackish waters and environments. For more information, please visit the homepage, which offers an expanded list of contents including tables and figures.
Price per copy: EUR 190.00 plus packing and postage.
Orders to: see below or email: schleiff@salinity.de
Irrigation and Agricultural Development, 1980
In der Sibari-Ebene/Sueditalien verursacht das oberhalb der kritischen Grundwassertiefe stehende ... more In der Sibari-Ebene/Sueditalien verursacht das oberhalb der kritischen Grundwassertiefe stehende natrium- und magnesiumsalzreiche Grundwasser eine Versalzung der Wurzelzone des Bodens, die in landwirtschaftlichen Kulturbestaenden zu fleckenweisem Auftreten von Salzschaeden fuehren. Als Beitrag zur Aufklaerung der Schadursachen von Natrium- und Magnesiumsalzen an Weizen im Felde und Mais im Gewaechshausversuch wurde neben Bodendaten der Mineralstoffzustand der Pflanzen herangezogen. Zunehmende Bodenversalzung senkte die Kaliumgehalte der Weizenpflanzen waehrend des Schossens unter der vorlaeufigen Ertragsgrenzwert von 30 %o, obwohl die pflanzenverfuegbaren Kalium-Gehalte des Bodens auch bei schlechtem Wachstum verglichen mit salzarmen Standorten als ausreichend einzustufen sind. Der fuer die Wasseraufnahme der Pflanzen wichtige Kationengehalt im Spross sank bei geringem Kalium-Angebot durch Na-Salinitaet bis unter 1 mval/g TS, betrug bei hohem K-Angebot aber 1,7 mval/g TS, ohne die P...
Zugleich: Kiel, Univ., Agrarwiss. Fak., Diss. 1973.
Motto: better approximately correct and in time – than more exact and too late
In the past decades crop salt tolerance research focussed mainly on two important aspects: (a) st... more In the past decades crop salt tolerance research focussed mainly on two important aspects: (a) study of the effects of vertical salt distribution in the rooted soil layer on crop salt tolerance, which is applied to manage crop growth on saline soils, (b) and to understand biochemical and physiological effects of salinity on plants at cell, tissue, organ and whole plant level as basic information to develop more salt tolerant plants. Unfortunately most biochemical and physiological findings were little relevant to improve plant growth under saline soils conditions. The objective of this paper is to point out an aspect that was rarely considered in the past decades, it is the effect of the transpiration driven lateral salt distribution around roots on crop salt tolerance. It is supposed that root morphology is a most important feature, which affects the process of salt accumulation around roots and thus water uptake from saline soils. Shoot transpiration causes a much steeper increase...
Introduction & Objective In arid and semi-arid areas there is an increasing pressure on agricultu... more Introduction & Objective In arid and semi-arid areas there is an increasing pressure on agriculture, horticulture and landscape greening to apply brackish irrigation waters and to cultivate salt-affected land. It is also evident that for most plants/crops growth conditions in saline environments are critical and even many halophytes may suffer seriously at soil salinity levels exceeding 1% or 2%. On the other hand soil salinity may vary at small scales and in short terms. In any case it is a significant advantage for a professional 'salinity' management to acquire relevant salinity and related soil fertility data on-site and real-time. The presented portable field laboratory 'SALINITY & SOIL FERTILITY KIT' offers a set of useful tests needed for a quantitative appraisal of growth conditions for plants in saline environments. The tests are based on field experience in projects from South America, Africa, Asia, Europe and Near East. Full Measurement Programme The full ...
http://www.salinity.de Introduction & Objective On saline soils water supply is the most critical... more http://www.salinity.de Introduction & Objective On saline soils water supply is the most critical growth factor limiting plant growth and crop salt tolerance. However, the process of water uptake by roots is far from being understood. The present concept (USDA, FAO) on crop salt tolerance rating and brackish/saline water irrigation considers the effect of vertical distribution of salts in the rooted soil layer only, resulting in practical recommendations (lea-ching requirements) to control salinity of the rooted soil layer at a crop-specific level (Fig.2, left-hand). References: SCHLEIFF U., 2012: Mechanistic approach to understand salt tolerance of irrigated crops. Work-shop der DBG Kommission I: Messung, Monitoring und Modellierung von Prozessen im System Boden-Pflanze-Atmosphaere; UFZ Leipzig: www.salinity.de. SCHLEIFF U., 2013: Soil-based vegetation technique to quantify effects of rhizospheric soil osmotic and matric water potentials on crop salt tolerance. J. Agronomy
One promising strategy to combat agricultural losses caused by increasing soil salinity is the de... more One promising strategy to combat agricultural losses caused by increasing soil salinity is the development of crops that are more tolerant to saline growth conditions. In the past decades research of plant salt tolerance focussed on the understanding of biochemical and physiological mechanism mainly happening inside organs of plants differing in their salt tolerance and growing under well-controlled soil-less conditions. This approach expanded our knowledge on hundreds of metabolic processes and detrimental effects significantly, but unfortunately most results did not contribute to improve salt tolerance of field-grown crops. Assuming that the cultivation of plants under hydroponic conditions was a major limitation, the focus of the presented approach to is soil-based. The classical concept of crop salt tolerance rating applied in irrigated agriculture is also soil-based, but considers only the vertical distribution of salts in the rooted soil layer, which results from controlled application of brackish waters. However, this concept does not consider that transpiration during periods of water depletion causes a separation of soil salinity between the rhizospheric soil volume occupied by roots and root hairs and the soil volume outside the rhizocylinder, the bulk soil. Basically, plant transpiration and exclusion of salts from root uptake divide the rooted soil layer into three fractions: (a) the rhizospheric soil, where soil meets root and where root water uptake and salt exclusion affect a build-up of soil water salinity, (2) the bulk soil, where soil water salinity is rarely affected, and (3) a transition zone between. Roots differ greatly in their ability to resist increasing soil water salinity and to form rhizospheric soil volumes. Pot experiments have shown that water uptake from soils of the same soil water salinity was about 350% higher by young rape plants (large rhizocylinder) as compared to young leek plants (small rhizocylinder). The results indicate a strong evidence that there is a strong relationship between root water uptake from saline soils and the soil volume directly affected by roots, the rhizocylinder. It is concluded that root morphology plays an important role for the salt tolerance of soil-grown crops. A model calculation shows the potential to improve salt tolerance of maize by modification of root morphology.
Abstract One promising strategy to combat agricultural losses caused by increasing soil salinity... more Abstract
One promising strategy to combat agricultural losses caused by increasing soil salinity is the development of crops that are more tolerant to saline growth conditions. In the past decades research of plant salt tolerance focussed on the understanding of biochemical and physiological mechanism mainly happening inside organs of plants differing in their salt tolerance and growing under well-controlled soil-less conditions. This approach expanded our knowledge on hundreds of metabolic processes and detrimental effects significantly, but unfortunately most results did not contribute to improve salt tolerance of field-grown crops. Assuming that the cultivation of plants under hydroponic conditions was a major limitation, the focus of the presented approach to is soil-based. The classical concept of crop salt tolerance rating applied in irrigated agriculture is also soil-based, but considers only the vertical distribution of salts in the rooted soil layer, which results from controlled application of brackish waters. However, this concept does not consider that transpiration during periods of water depletion causes a separation of soil salinity between the rhizospheric soil volume occupied by roots and root hairs and the soil volume outside the rhizocylinder, the bulk soil. Basically, plant transpiration and exclusion of salts from root uptake divide the rooted soil layer into three fractions: (a) the rhizospheric soil, where soil meets root and where root water uptake and salt exclusion affect a build-up of soil water salinity, (2) the bulk soil, where soil water salinity is rarely affected, and (3) a transition zone between. Roots differ greatly in their ability to resist increasing soil water salinity and to form rhizospheric soil volumes. Pot experiments have shown that water uptake from soils of the same soil water salinity was about 350% higher by young rape plants (large rhizocylinder) as compared to young leek plants (small rhizocylinder). The results indicate a strong evidence that there is a strong relationship between root water uptake from saline soils and the soil volume directly affected by roots, the rhizocylinder. It is concluded that root morphology plays an important role for the salt tolerance of soil-grown crops. A model calculation shows the potential to improve salt tolerance of maize by modification of root morphology.
Journal of Plant Nutrition and Soil Science, 1982
Wenn Pflanzen aus Salzböden Wasser aufnehmen, reichern sich die zur Wurzeloberfläche verlagerten ... more Wenn Pflanzen aus Salzböden Wasser aufnehmen, reichern sich die zur Wurzeloberfläche verlagerten Salze in der wurzelnahen Bodenlösung an. Die in ihr gelösten Salze erniedrigen das osmotische Potential gegenüber der wurzelferneren Bodenlösung um ein Vielfaches. Dadurch wird die Wasseraufnahmerate der Wurzeln beeinträchtigt. Sprosse junger Zuckerrüben, deren Wurzel system von einer wurzelnahen Bodenlösung mit Ψ-Werten von –0,5 bis – 2,0 MPa umgeben war, transpirierten etwa 3,0 bzw. 1,0 ml/h/g TS Sproßgewicht. Aus Bodenlösungen von – 2,5 bis – 3,0 MPa erfolgte keine nennenswerte Wasseraufnahme. Es wird angenommen, daß Ψ-Werte dieser Größenordnung nur in der wurzelnahen Bodenlösung solcher Wurzeln möglich sind, deren Sprosse bereits stark salzadaptiert sind. Der Ψ-Wert der wurzelnahen Bodenlösung in einem sandigen Boden, der die Wasseraufnahme der Wurzel unterbindet, wurde kaum vom Wassergehalt des Bodens beeinträchtigt.Water uptake of young sugar beets in relation to the salt concentration of the rhizospheric soil solutionWhen plants absorb soil water from saline soils salts translocated to the roots surface accumulate in the soil solution close to the roots. Due to the salt dissolved in the rhizospheric soil solution its osmotic potential is several times lower than the osmotic potential of the soil solution far from the roots thus affecting their water uptake. Shoots of young sugar beets transpired about 3,0 resp. 1 ml/h/g shoot dry matter, when the roots were surrounded by soil solutions of –0,5 MPa resp. –2,0 MPa. There was nearly no water, uptake from soil solutions of –2,5 to –3,0 MPa. Ψ-values of this range are supposed to occur only around roots of highly salt adapted sugar beets. In a wide range the water content of a sandy soil did not affect the Ψ-value preventing water uptake.
Journal of Plant Nutrition and Soil Science, 1987
Es wird eine Vegetationstechnik zur quantitativen Bestimmung der Wasseraufnahmerate durch Wurzeln... more Es wird eine Vegetationstechnik zur quantitativen Bestimmung der Wasseraufnahmerate durch Wurzeln, die unterschiedlichen Kombinationen des matrischen und osmotischen Wasserpotentials des wurzelnahen Bodens (Rhizobodens) ausgesetzt sind, vorgestellt. Die Vegetationstechnik besteht im Kern aus zwei Wachstumsabschnitten, einer Anzucht- und einer Versuchsphase. Ziel der Anzuchtphase ist es, eine Anzahl einheitlicher Versuchspflanzen in bodengefüllten Gefäßen durch genau kontrollierte Wasserdosierung anzuziehen, bis der Boden so intensiv durchwurzelt ist, daß er insgesamt als Rhizoboden angesehen werden kann. Die Versuchsphase wird eingeleitet, indem der Boden bis auf Feldkapazität gebracht wird. Dem Gießwasser werden unterschiedliche Salzmengen zugegeben, so daß die Pflanzenwurzeln nun einem einheitlich hohen matrischen Wasserpotential, aber unterschiedlichen osmotischen Wasserpotentialen ausgesetzt sind. Anschließend werden die Pflanzen für ein bis drei Tage konstanten Klimabedingungen ausgesetzt und der Transpirationswasserverlust gravimetrisch in kurzen Zeitabständen erfaßt. Aus den Wägungen kann rechnerisch auf den Verlauf des matrischen, osmotischen und Gesamtwasserpotentials des Rhizobodens, die Wasseraufnahmerate der Wurzeln, die Transpirations- und Wachstumsrate der Sprosse geschlossen werden.A vegetation technique to study the water uptake by roots from salinized rhizospheric soilsThe paper presents a vegetation technique to study the water uptake rate by roots, which are exposed to rhizospheric soils (soil in close vicinity of roots) of different combinations of soil osmotic and soil matrix water potential. The vegetation technique consists of two growth periods, a period of preculture and an experimental period. The aim of the preculture is to obtain series of homogenous plants growing each in a small pot filled with a densely rooted soil. At the end of the preculture all plants are very similar with respect to shoot and root development.The aim of the experimental period is to study the effects of various combinations of soil osmotic and matrix water potential on the water supply of plants. Thus the experimental period starts with supplying all pots with the same amount of water up to field capacity. In order to obtain different osmotic water potentials of the soil solutions, the water is differently salinized. Then the plants are exposed to constant climatical growth conditions. During the following days the water loss of the pots is determined hourly. The development of the matrix, osmotic and total soil water potential, the water uptake rate of the roots, the transpiration rate and growth rate of the shoots can be calculated from the water losses.
Journal of Plant Nutrition and Soil Science, 1987
During periods of water depletion the water supply of plants from saline soils is reduced due to ... more During periods of water depletion the water supply of plants from saline soils is reduced due to the simultaneous decrease of the soil osmotic and the soil matric water potential. Common models on the water uptake from saline soils assume a similar depressing effect of osmotic and matric water potentials on the water uptake by plants. As plants differ in their ability to overcome salt stress and soils differ in their water retention curves there is some doubt for the general validity of this assumption. The paper presents results of an experiment with rape grown in a sandy and a silty soil at three salinity levels. The transpiration rate of the plants was determined during a period of 34 hours and related to the total water potential of the two soils. In case of the silty soil, the transpiration was related to the total soil water potential at all salinity levels. In the sandy soil, however, the transpiration was much more affected by decreasing soil matric potential than by equivalent decreases of the soil osmotic potential. The results show that the effect of both potentials on the water supply of plants is not the same and has to be treated separately.Vergleich der Transpirationsraten junger Rapspflanzen auf versalzten Böden unterschiedlicher TexturIm Verlaufe des Wasserentzuges auf versalzten Böden nimmt die Wasserversorgung von Pflanzen wegen simultan sinkender osmotischer und matrischer Bodenwasserpotentiale ab. Verbreitete Modelle, die die Wasseraufnahme aus versalzten Böden beschreiben, legen eine quantitativ gleiche Wirkung abnehmender osmotischer und matrischer Wasserpotentiale auf die Wasseraufnahme durch Pflanzen zugrunde. Da Pflanzen sich in ihrer Salztoleranz unterscheiden und Böden unterschiedliche pF-Kurven haben, sind Zweifel an der Allgemeingültigkeit dieser Annahme angebracht. Es werden Versuchsergebnisse mit Raps vorgestellt, der in einem sandigen und einem schluffigen Boden bei drei Versalzungsstufen aufwuchs. Die Transpirationsrate der Pflanzen wurde innerhalb eines Zeitraumes von 34 Stunden gemessen und auf das Gesamt-wasserpotential der Böden bezogen. Im Schluffboden wurde bei allen Versalzungsstufen eine gute Beziehung zwischen dem Gesamtwasserpotential des Bodens und der Transpiration der Pflanzen gefunden. Im sandigen Boden wurde die Transpiration jedoch wesentlich stärker durch die Abnahme im Matrixpotential als durch äquivalente Abnahmen des osmotischen Potentials beeinträchtigt. Die Ergebnisse zeigen, daß beide Potentiale grundsätzlich unter-schiedlich auf die Wasserversorgung der Pflanzen wirken und deshalb eine getrennte Bewertung vorgenommen werden sollte.
Agricultural Water Management, 1981
World wide annually about 10 million hectares of good agricultural land are abandoned due to incr... more World wide annually about 10 million hectares of good agricultural land are abandoned due to increasing soil salinity levels, often caused by long term unprofessional irrigation management, flooding with brackish waters, rise of saline groundwaters or re-use of treated or untreated waste waters. A professional management of land and environments endangered from salts is needed to register unfavourable developments in time and protect land resources from various types of desertification. A long term monitoring of soil and water quality status in conjunction with field observations on crops and vegetation is an important tool to prevent severe economical losses and to protect natural resources from further degradation. A successful monitoring should include the measurement of chemical parameters of soils, waters and plants. However many projects suffering from degradation of natural resources hesitate to implement monitoring activities, as the costs for stationary laboratories and qualified staffs are considered as too high. The portable field laboratory SALINITY&SOIL FERTILITY KIT and the developed methods offer the application of simplified procedures to determine many relevant parameters at reduced costs. This contribution presents an overview on rapid field tests, but the focus of this paper is an approach to evaluate the Nitrogen status of plants from rapid testing of plant tissue under field conditions semi-quantitatively. The paper is an extract from the field methods published already earlier in the HANDBOOK for the 'SALINITY&SOIL FERTILITY KIT'.