siva P - Academia.edu (original) (raw)

Papers by siva P

Research paper thumbnail of In-situ Formation of TiC using Laser Cladding (1)

Composite materials result from the combination of two or more dissimilar materials with differen... more Composite materials result from the combination of two or more dissimilar materials with different physical and mechanical properties. The final product has superior properties compared to the individual components. Particles or reinforcements in different geometries, including particulates, fibres and whiskers are used in various types of matrices such as polymers, ceramics or metals. The toughness and strength of composites are thus functions of the matrix and reinforcements properties and phase morphology. Most composites are made from a ductile matrix in which hard particles are distributed. The matrix of a composite can be a polymer, ceramic, or metal. Metal matrix composites (MMCs) are a type of composite in which ceramics, such as TiC, WC and TiB 2 with a high melting point and high hardness, are distributed in a metal matrix like Fe, Co or Ni. Fe and its alloys have attracted substantial attention of late due to their advantages over other alloys. These advantages include availability, low cost, and chemical compatibility with a wide range of steels. Al 2 O 3 , ZrO 2 , TiN, TiC and VC are examples of hard particles used as reinforcements in metal matrices. Among these particles, TiC has sparked considerable interest because of its good wettability with Fe, high hardness and low density compared to the other components. In metal matrix composites, hard particles distributed in the matrix cause an increase in strength, stiffness, wear resistance and decreased density (Cui et al., 2007; Emamian et al., 2010c;. Different methods are used to form Fe-TiC composites. For example, reviewed various synthesis routes of TiC-reinforced Fe-based composites such as powder metallurgy, conventional melting, casting, combustion synthesis and laser surface melting. Additionally, the authors formed TiC by a combustion synthesis method known as aluminothermy. Similarly, Jiang et al. (2000 fabricated a metal matrix composite by a casting process. Using WC and TiC as reinforcing particles, they determined that these particles are evenly distributed in the metal matrix. Unfortunately, these methods are not well suited to produce an MMC coating. Laser cladding is an effective method which is extensively used in surface modifications of metallic materials. The highly-focused generated heat in this process results in a minimal heat-affected zone. Therefore, the process has a minimum impact on a substrate's mechanical properties. In conventional laser cladding, the majority of reinforcing phases are directly added into the coating materials (i.e., an ex-situ process). Ariely et al. (1991) carried out laser alloying of AISI 1045 steel with TiC powder fed by the dynamic blowing method. They studied the effect of changing the laser power, scan speed and feed rate on the process.

Research paper thumbnail of In-situ Formation of TiC using Laser Cladding (1)

Composite materials result from the combination of two or more dissimilar materials with differen... more Composite materials result from the combination of two or more dissimilar materials with different physical and mechanical properties. The final product has superior properties compared to the individual components. Particles or reinforcements in different geometries, including particulates, fibres and whiskers are used in various types of matrices such as polymers, ceramics or metals. The toughness and strength of composites are thus functions of the matrix and reinforcements properties and phase morphology. Most composites are made from a ductile matrix in which hard particles are distributed. The matrix of a composite can be a polymer, ceramic, or metal. Metal matrix composites (MMCs) are a type of composite in which ceramics, such as TiC, WC and TiB 2 with a high melting point and high hardness, are distributed in a metal matrix like Fe, Co or Ni. Fe and its alloys have attracted substantial attention of late due to their advantages over other alloys. These advantages include availability, low cost, and chemical compatibility with a wide range of steels. Al 2 O 3 , ZrO 2 , TiN, TiC and VC are examples of hard particles used as reinforcements in metal matrices. Among these particles, TiC has sparked considerable interest because of its good wettability with Fe, high hardness and low density compared to the other components. In metal matrix composites, hard particles distributed in the matrix cause an increase in strength, stiffness, wear resistance and decreased density (Cui et al., 2007; Emamian et al., 2010c;. Different methods are used to form Fe-TiC composites. For example, reviewed various synthesis routes of TiC-reinforced Fe-based composites such as powder metallurgy, conventional melting, casting, combustion synthesis and laser surface melting. Additionally, the authors formed TiC by a combustion synthesis method known as aluminothermy. Similarly, Jiang et al. (2000 fabricated a metal matrix composite by a casting process. Using WC and TiC as reinforcing particles, they determined that these particles are evenly distributed in the metal matrix. Unfortunately, these methods are not well suited to produce an MMC coating. Laser cladding is an effective method which is extensively used in surface modifications of metallic materials. The highly-focused generated heat in this process results in a minimal heat-affected zone. Therefore, the process has a minimum impact on a substrate's mechanical properties. In conventional laser cladding, the majority of reinforcing phases are directly added into the coating materials (i.e., an ex-situ process). Ariely et al. (1991) carried out laser alloying of AISI 1045 steel with TiC powder fed by the dynamic blowing method. They studied the effect of changing the laser power, scan speed and feed rate on the process.