sofia rahman - Academia.edu (original) (raw)

sofia rahman

Related Authors

Vivekanand Jha

David Kirby

David Kirby

California Polytechnic State University at San Luis Obispo

Lesley Hall

Zackary Berger

Dr Silvia  Camporesi

Vladimir  Janković

Nathaniel Comfort

Sunil Aggarwal

Hanna Kienzler

Fezal  Ozdemir

Uploads

Papers by sofia rahman

Research paper thumbnail of Molecular mechanisms of congenital hyperinsulinism

Journal of molecular endocrinology, Jan 2, 2015

Congenital hyperinsulinism (CHI) is a complex heterogeneous condition in which insulin secretion ... more Congenital hyperinsulinism (CHI) is a complex heterogeneous condition in which insulin secretion from pancreatic β-cells is unregulated and inappropriate for the level of blood glucose. The inappropriate insulin secretion drives glucose into the insulin sensitive tissues, such as the muscle, liver and adipose tissue leading to severe hyperinsulinaemic hypoglycaemia (HH). At a molecular level, genetic abnormalities in 9 different genes (ABCC8, KCNJ11, GLUD1, GCK, HNF4A, HNF1A, SLC16A1, UCP2, HADH) have been identified which cause CHI. Autosomal recessive and dominant mutations in ABCC8/KCNJ11 are the commonest cause of medically-unresponsive CHI. Mutations in GLUD1 and HADH lead to leucine-induced HH and these two genes encode for the key enzymes (glutamate dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase) which play a key role in amino acid and fatty acid regulation of insulin secretion, respectively. Genetic abnormalities in HNF4A and HNF1A lead to a dual phenotype of ...

Research paper thumbnail of Molecular mechanisms of congenital hyperinsulinism

Journal of molecular endocrinology, Jan 2, 2015

Congenital hyperinsulinism (CHI) is a complex heterogeneous condition in which insulin secretion ... more Congenital hyperinsulinism (CHI) is a complex heterogeneous condition in which insulin secretion from pancreatic β-cells is unregulated and inappropriate for the level of blood glucose. The inappropriate insulin secretion drives glucose into the insulin sensitive tissues, such as the muscle, liver and adipose tissue leading to severe hyperinsulinaemic hypoglycaemia (HH). At a molecular level, genetic abnormalities in 9 different genes (ABCC8, KCNJ11, GLUD1, GCK, HNF4A, HNF1A, SLC16A1, UCP2, HADH) have been identified which cause CHI. Autosomal recessive and dominant mutations in ABCC8/KCNJ11 are the commonest cause of medically-unresponsive CHI. Mutations in GLUD1 and HADH lead to leucine-induced HH and these two genes encode for the key enzymes (glutamate dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase) which play a key role in amino acid and fatty acid regulation of insulin secretion, respectively. Genetic abnormalities in HNF4A and HNF1A lead to a dual phenotype of ...

Log In