yun yung - Academia.edu (original) (raw)

Papers by yun yung

Research paper thumbnail of Identification of neural programmed cell death through the detection of DNA fragmentation in situ and by PCR

Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ... [et al.], 2009

Programmed cell death is a fundamental process for the development and somatic maintenance of org... more Programmed cell death is a fundamental process for the development and somatic maintenance of organisms. This unit describes methods for visualizing both dying cells in situ and for detection of nucleosomal ladders. A description of various current detection strategies is provided, as well as support protocols for preparing positive and negative controls and for preparing genomic DNA.

Research paper thumbnail of Lysophosphatidic Acid Signaling in the Nervous System

Neuron, Jan 18, 2015

The brain is composed of many lipids with varied forms that serve not only as structural componen... more The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.

Research paper thumbnail of Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains

eLife, 2015

Previous reports have shown that individual neurons of the brain can display somatic genomic mosa... more Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ~8% over non-diseased controls that were unrelated to trisomy 21. Two independent single-cell copy number analyses identified amplifications at the APP locus. The use of single-cell qPCR identified up to 12 copies of APP in sampled neurons. Peptide nucleic acid (PNA) probes targeting APP, combined with super-resolution microscopy detected primarily single fluorescent signals of variable intensity that paralleled single-cell qPCR analyses. These data identify somatic genomic changes in single neurons, affecting known and unknown loci, which are increased in sporadic AD, and furt...

Research paper thumbnail of Lysophosphatidic Acid Signaling May Initiate Fetal Hydrocephalus

Science Translational Medicine, 2011

Research paper thumbnail of Developmentally Regulated Activation of a SINE B2 Repeat as a Domain Boundary in Organogenesis

Science, 2007

The following resources related to this article are available online at

Research paper thumbnail of FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation

Proceedings of the National Academy of Sciences, 2011

Sphingosine 1-phosphate (S1P), a lysophospholipid, has gained relevance to multiple sclerosis thr... more Sphingosine 1-phosphate (S1P), a lysophospholipid, has gained relevance to multiple sclerosis through the discovery of FTY720 (fingolimod), recently approved as an oral treatment for relapsing forms of multiple sclerosis. Its mechanism of action is thought to be immunological through an active phosphorylated metabolite, FTY720-P, that resembles S1P and alters lymphocyte trafficking through receptor subtype S1P 1 . However, previously reported expression and in vitro studies of S1P receptors suggested that direct CNS effects of FTY720 might theoretically occur through receptor modulation on neurons and glia. To identify CNS cells functionally contributing to FTY720 activity, genetic approaches were combined with cellular and molecular analyses. These studies relied on the functional assessment, based on clinical score, of conditional null mouse mutants lacking S1P 1 in CNS cell lineages and challenged by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. All conditional null mutants displayed WT lymphocyte trafficking that responded normally to FTY720. In marked contrast, EAE was attenuated and FTY720 efficacy was lost in CNS mutants lacking S1P 1 on GFAP-expressing astrocytes but not on neurons. In situ hybridization studies confirmed that astrocyte loss of S1P 1 was the key alteration in functionally affected mutants. Reductions in EAE clinical scores were paralleled by reductions in demyelination, axonal loss, and astrogliosis. Receptor rescue and pharmacological experiments supported the loss of S1P 1 on astrocytes through functional antagonism by FTY720-P as a primary FTY720 mechanism. These data identify nonimmunological CNS mechanisms of FTY720 efficacy and implicate S1P signaling pathways within the CNS as targets for multiple sclerosis therapies.

Research paper thumbnail of LPA Receptors: Subtypes and Biological Actions

Annual Review of Pharmacology and Toxicology, 2010

Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular sig... more Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular signaling molecule by binding to and activating at least five known G protein-coupled receptors (GPCRs): LPA 1 -LPA 5 . They are encoded by distinct genes named LPAR1-LPAR5 in humans and Lpar1-Lpar5 in mice. The biological roles of LPA are diverse and include developmental, physiological, and pathophysiological effects. This diversity is mediated by broad and overlapping expression patterns and multiple downstream signaling pathways activated by cognate LPA receptors. Studies using cloned receptors and genetic knockout mice have been instrumental in uncovering the significance of this signaling system, notably involving basic cellular processes as well as multiple organ systems such as the nervous system. This has further provided valuable proof-of-concept data to support LPA receptors and LPA metabolic enzymes as targets for the treatment of medically important diseases that include neuropsychiatric disorders, neuropathic pain, infertility, cardiovascular disease, inflammation, fibrosis, and cancer.

Research paper thumbnail of Identification of neural programmed cell death through the detection of DNA fragmentation in situ and by PCR

Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ... [et al.], 2009

Programmed cell death is a fundamental process for the development and somatic maintenance of org... more Programmed cell death is a fundamental process for the development and somatic maintenance of organisms. This unit describes methods for visualizing both dying cells in situ and for detection of nucleosomal ladders. A description of various current detection strategies is provided, as well as support protocols for preparing positive and negative controls and for preparing genomic DNA.

Research paper thumbnail of Lysophosphatidic Acid Signaling in the Nervous System

Neuron, Jan 18, 2015

The brain is composed of many lipids with varied forms that serve not only as structural componen... more The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural processes and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states.

Research paper thumbnail of Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains

eLife, 2015

Previous reports have shown that individual neurons of the brain can display somatic genomic mosa... more Previous reports have shown that individual neurons of the brain can display somatic genomic mosaicism of unknown function. In this study, we report altered genomic mosaicism in single, sporadic Alzheimer's disease (AD) neurons characterized by increases in DNA content and amyloid precursor protein (APP) gene copy number. AD cortical nuclei displayed large variability with average DNA content increases of ~8% over non-diseased controls that were unrelated to trisomy 21. Two independent single-cell copy number analyses identified amplifications at the APP locus. The use of single-cell qPCR identified up to 12 copies of APP in sampled neurons. Peptide nucleic acid (PNA) probes targeting APP, combined with super-resolution microscopy detected primarily single fluorescent signals of variable intensity that paralleled single-cell qPCR analyses. These data identify somatic genomic changes in single neurons, affecting known and unknown loci, which are increased in sporadic AD, and furt...

Research paper thumbnail of Lysophosphatidic Acid Signaling May Initiate Fetal Hydrocephalus

Science Translational Medicine, 2011

Research paper thumbnail of Developmentally Regulated Activation of a SINE B2 Repeat as a Domain Boundary in Organogenesis

Science, 2007

The following resources related to this article are available online at

Research paper thumbnail of FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation

Proceedings of the National Academy of Sciences, 2011

Sphingosine 1-phosphate (S1P), a lysophospholipid, has gained relevance to multiple sclerosis thr... more Sphingosine 1-phosphate (S1P), a lysophospholipid, has gained relevance to multiple sclerosis through the discovery of FTY720 (fingolimod), recently approved as an oral treatment for relapsing forms of multiple sclerosis. Its mechanism of action is thought to be immunological through an active phosphorylated metabolite, FTY720-P, that resembles S1P and alters lymphocyte trafficking through receptor subtype S1P 1 . However, previously reported expression and in vitro studies of S1P receptors suggested that direct CNS effects of FTY720 might theoretically occur through receptor modulation on neurons and glia. To identify CNS cells functionally contributing to FTY720 activity, genetic approaches were combined with cellular and molecular analyses. These studies relied on the functional assessment, based on clinical score, of conditional null mouse mutants lacking S1P 1 in CNS cell lineages and challenged by experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. All conditional null mutants displayed WT lymphocyte trafficking that responded normally to FTY720. In marked contrast, EAE was attenuated and FTY720 efficacy was lost in CNS mutants lacking S1P 1 on GFAP-expressing astrocytes but not on neurons. In situ hybridization studies confirmed that astrocyte loss of S1P 1 was the key alteration in functionally affected mutants. Reductions in EAE clinical scores were paralleled by reductions in demyelination, axonal loss, and astrogliosis. Receptor rescue and pharmacological experiments supported the loss of S1P 1 on astrocytes through functional antagonism by FTY720-P as a primary FTY720 mechanism. These data identify nonimmunological CNS mechanisms of FTY720 efficacy and implicate S1P signaling pathways within the CNS as targets for multiple sclerosis therapies.

Research paper thumbnail of LPA Receptors: Subtypes and Biological Actions

Annual Review of Pharmacology and Toxicology, 2010

Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular sig... more Lysophosphatidic acid (LPA) is a small, ubiquitous phospholipid that acts as an extracellular signaling molecule by binding to and activating at least five known G protein-coupled receptors (GPCRs): LPA 1 -LPA 5 . They are encoded by distinct genes named LPAR1-LPAR5 in humans and Lpar1-Lpar5 in mice. The biological roles of LPA are diverse and include developmental, physiological, and pathophysiological effects. This diversity is mediated by broad and overlapping expression patterns and multiple downstream signaling pathways activated by cognate LPA receptors. Studies using cloned receptors and genetic knockout mice have been instrumental in uncovering the significance of this signaling system, notably involving basic cellular processes as well as multiple organ systems such as the nervous system. This has further provided valuable proof-of-concept data to support LPA receptors and LPA metabolic enzymes as targets for the treatment of medically important diseases that include neuropsychiatric disorders, neuropathic pain, infertility, cardiovascular disease, inflammation, fibrosis, and cancer.