Frank Armenta | Instituto Politécnico Nacional (original) (raw)
Address: Ciudad De México, Distrito Federal, Mexico
less
Related Authors
Friedrich-Alexander-Universität Erlangen-Nürnberg
Uploads
Papers by Frank Armenta
Journal of Membrane Biology, 2010
In biological systems, charged membrane surfaces are surrounded by charged molecules such as elec... more In biological systems, charged membrane surfaces are surrounded by charged molecules such as electrolyte ions and proteins. Our recent experiments in the systems of giant phospholipid vesicles indicated that some of the blood plasma proteins (macro-ions) may promote adhesion between equally charged membrane surfaces. In this work, theory was put forward to describe an IgG antibody-mediated attractive interaction between negatively charged membrane surfaces which was observed in experiments on giant phospholipid vesicles with cardiolipin-containing membranes. The attractive interactions between negatively charged membrane surfaces in the presence of negatively and positively charged spherical macro-ions are explained using functional density theory and Monte Carlo simulations. Both, the rigorous solution of the variational problem within the functional density theory and the Monte Carlo simulations show that spatial and orientational ordering of macro-ions may give rise to an attractive interaction between negatively charged membrane surfaces. It is also shown that the distinctive spatial distribution of the charge within the macro-ions (proteins) is essential in this process.
Journal of Membrane Biology, 2010
In biological systems, charged membrane surfaces are surrounded by charged molecules such as elec... more In biological systems, charged membrane surfaces are surrounded by charged molecules such as electrolyte ions and proteins. Our recent experiments in the systems of giant phospholipid vesicles indicated that some of the blood plasma proteins (macro-ions) may promote adhesion between equally charged membrane surfaces. In this work, theory was put forward to describe an IgG antibody-mediated attractive interaction between negatively charged membrane surfaces which was observed in experiments on giant phospholipid vesicles with cardiolipin-containing membranes. The attractive interactions between negatively charged membrane surfaces in the presence of negatively and positively charged spherical macro-ions are explained using functional density theory and Monte Carlo simulations. Both, the rigorous solution of the variational problem within the functional density theory and the Monte Carlo simulations show that spatial and orientational ordering of macro-ions may give rise to an attractive interaction between negatively charged membrane surfaces. It is also shown that the distinctive spatial distribution of the charge within the macro-ions (proteins) is essential in this process.