jinang shah | Indian Institute of Technology, Kanpur (original) (raw)
Uploads
Papers by jinang shah
Recent progress in deep learning has primarily been fueled by the availability of large amounts o... more Recent progress in deep learning has primarily been fueled by the availability of large amounts of annotated data that is obtained from highly expensive manual annotating pro-cesses. To tackle this issue of availability of annotated data, a lot of research has been done on unsupervised domain adaptation that tries to generate systems for an unlabelled target domain data, given labeled source domain data. However, the availability of annotated or labelled source domain dataset can’t always be guaranteed because of data-privacy issues. This is especially the case with medical data, as it may contain sensitive information of the patients. Source-free domain adaptation (SFDA) aims to resolve this issue by us-ing models trained on the source data instead of using the original annotated source data. In this work, we try to build SFDA systems for semantic processing by specifically focusing on the negation detection subtask of the SemEval2021 Task 10. We propose two approaches -ProtoAUGand...
Recent progress in deep learning has primarily been fueled by the availability of large amounts o... more Recent progress in deep learning has primarily been fueled by the availability of large amounts of annotated data that is obtained from highly expensive manual annotating pro-cesses. To tackle this issue of availability of annotated data, a lot of research has been done on unsupervised domain adaptation that tries to generate systems for an unlabelled target domain data, given labeled source domain data. However, the availability of annotated or labelled source domain dataset can’t always be guaranteed because of data-privacy issues. This is especially the case with medical data, as it may contain sensitive information of the patients. Source-free domain adaptation (SFDA) aims to resolve this issue by us-ing models trained on the source data instead of using the original annotated source data. In this work, we try to build SFDA systems for semantic processing by specifically focusing on the negation detection subtask of the SemEval2021 Task 10. We propose two approaches -ProtoAUGand...