Leni Moldovan | Indiana University Indianapolis (original) (raw)
Papers by Leni Moldovan
The American journal of pathology, 2016
Angiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the ren... more Angiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the renin angiotensin system that regulates the classic renin angiotensin system axis. We aimed to determine whether local retinal overexpression of adenoassociated virus (AAV)-ACE2 prevents or reverses diabetic retinopathy. Green fluorescent protein (GFP)-chimeric mice were generated to distinguish resident (retinal) from infiltrating bone marrow-derived inflammatory cells and were made diabetic using streptozotocin injections. Retinal digestion using trypsin was performed and acellular capillaries enumerated. Capillary occlusion by GFP(+) cells was used to measure leukostasis. Overexpression of ACE2 prevented (prevention cohort: untreated diabetic, 11.3 ± 1.4; ACE2 diabetic, 6.4 ± 0.9 per mm(2)) and partially reversed (reversal cohort: untreated diabetic, 15.7 ± 1.9; ACE2 diabetic, 6.5 ± 1.2 per mm(2)) the diabetes-associated increase of acellular capillaries and the increase of infiltrating ...
Molecular Vision, Sep 1, 2004
We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potenti... more We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potential clinical application in the treatment of proliferative diabetic retinopathy (PDR) and age-related macular degeneration (AMD). We suggest the encapsulation of drugs in implantable sustained release devices, limited by membranes with pores in the tens of nanometers diameter range, which display a slower, quasi-linear release kinetics, and a better selectivity than other membranes. In this paper we explored the feasibility of this approach by testing in vitro several key elements of the nanofilter system: diffusion of drugs of interest, efficacy in producing desirable effects on cells, and biocompatibility of used material with some of the cells encountered in the ocular cavity. We used an aluminum oxide filter (Anopore) with pores of 20 nm as a limiting medium for the administration of drugs. First, we induced an oxidative stress in human retinal endothelial cells (HREC) by treating them with hydrogen peroxide diffused across the filter, in the absence or in the presence of catalase. HREC attached to the culture plate, or emerging as angiogenic sprouts from aggregates embedded in collagen gels, were also exposed to vitamin C or to endostatin delivered across the nanoporous filter. Direct exposure of the cells to the agents served as positive controls. Growth of cells on the filter was considered an indication for biocompatibility. Catalase diffused across the nanoporous membrane counteracted the cytotoxic effect of hydrogen peroxide on HREC. We also found that vitamin C, acting directly or after diffusion across the filter, up to concentrations physiologically present in the eye, was a concentration dependent modulator of HREC's ability to survive and sprout. Additionally, we confirmed the ability of endostatin to block the growth of HREC either attached or sprouting from cell aggregates, after diffusion across the Anopore nanofilter. The drug delivery method based on the administration of angiostatic and antioxidant agents across the inorganic aluminum oxide nanoporous filter passed the key in vitro tests for diffusibility and biocompatibility, opening the way for medical applications.
Archives of Pathology Laboratory Medicine, Apr 1, 2002
To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrati... more To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrative approaches of genomics in cellular physiology. We present a meta-analysis of recently reported results obtained by means of high-throughput technologies (complementary DNA and oligonucleotide arrays, serial analysis of gene expression [SAGE]), as well as more traditional molecular biology approaches (real-time polymerase chain reaction, differential display, and others). Newly published articles identified on PubMed and additional data provided by authors on-line (where available). The impact of genomic analysis on cardiovascular research is already visible. New genes of cardiovascular interest have been discovered, while a number of known genes have been found to be changed in unexpected contexts. The patterns in the variation of expression of many genes correlate well with the models currently used to explain the pathogenesis of cardiovascular diseases. Much more work has yet to be done, however, for the full exploitation of the immense informative potential still dormant in the genomic technologies.
Dynamical Networks in Physics and Biology, 1998
Biomaterials, 2015
Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied ... more Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 μm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not assoc...
Archives of pathology & laboratory medicine, 2002
To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrati... more To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrative approaches of genomics in cellular physiology. We present a meta-analysis of recently reported results obtained by means of high-throughput technologies (complementary DNA and oligonucleotide arrays, serial analysis of gene expression [SAGE]), as well as more traditional molecular biology approaches (real-time polymerase chain reaction, differential display, and others). Newly published articles identified on PubMed and additional data provided by authors on-line (where available). The impact of genomic analysis on cardiovascular research is already visible. New genes of cardiovascular interest have been discovered, while a number of known genes have been found to be changed in unexpected contexts. The patterns in the variation of expression of many genes correlate well with the models currently used to explain the pathogenesis of cardiovascular diseases. Much more work has yet to be ...
Gene expression, 1999
A variety of stressful events can trigger the production of free radicals by exposed cells. For y... more A variety of stressful events can trigger the production of free radicals by exposed cells. For years, the effect of such highly reactive radicals was expected to be damaging to cells, altering their biology irreversibly. However, many recent reports have shown that reactive oxygen species can have additional functions, and contribute to important signaling pathways to regulate key biological responses, including cell migration, mitosis, and apoptosis. With this review, we address the role of the small GTP binding protein, Rac, as a regulatory protein that controls superoxide production, and the effect of superoxide and derived oxidants in cell signaling.
Molecular vision, Jan 18, 2004
We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potenti... more We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potential clinical application in the treatment of proliferative diabetic retinopathy (PDR) and age-related macular degeneration (AMD). We suggest the encapsulation of drugs in implantable sustained release devices, limited by membranes with pores in the tens of nanometers diameter range, which display a slower, quasi-linear release kinetics, and a better selectivity than other membranes. In this paper we explored the feasibility of this approach by testing in vitro several key elements of the nanofilter system: diffusion of drugs of interest, efficacy in producing desirable effects on cells, and biocompatibility of used material with some of the cells encountered in the ocular cavity. We used an aluminum oxide filter (Anopore) with pores of 20 nm as a limiting medium for the administration of drugs. First, we induced an oxidative stress in human retinal endothelial cells (HREC) by treating the...
Journal of the American Heart Association, 2013
World Wide Web at:
C108. GENETICS AND FUNCTIONAL GENOMICS OF PULMONARY VASCULAR DISEASE, 2011
Methods in Molecular Biology, 2013
Small extracellular vesicles are released from both healthy and disease cells to facilitate cellu... more Small extracellular vesicles are released from both healthy and disease cells to facilitate cellular communication. They have a wide variety of names including exosomes, microvesicles and microparticles. Depending on their size, very small extracellular vesicles originating from the endocytic pathway have been called exosomes and in some cases nanovesicles. Collectively, extracellular vesicles are important mediators of a wide variety of functions including immune cell development and homeostasis. Encapsulated in the extracellular vesicles are proteins and nucleic acids including mRNA and microRNA molecules. MicroRNAs are small, non-coding RNA molecules implicated in the post-transcriptional control of gene expression that have emerged as important regulatory molecules and are involved in disease pathogenesis including cancer. In some diseases, not only does the quantity and the subpopulations of extracellular vesicles change in the peripheral blood but also microRNAs. Here, we described the analysis of peripheral blood extracellular vesicles by flow cytometry and the RNA extraction from extracellular vesicles isolated from the plasma or serum to profile microRNA expression.
PLoS ONE, 2014
Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the ... more Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2-monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2), the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs) with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pretreated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1a-deficient macrophages differentiated from the bone marrow of HIF-1a fl/fl /LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression. Citation: Forget MA, Voorhees JL, Cole SL, Dakhlallah D, Patterson IL, et al. (2014) Macrophage Colony-Stimulating Factor Augments Tie2-Expressing Monocyte Differentiation, Angiogenic Function, and Recruitment in a Mouse Model of Breast Cancer. PLoS ONE 9(6): e98623.
D98. EPITHELIAL AGING, INJURY AND REGENERATION IN PULMONARY FIBROSIS, 2011
D98 EPITHELIAL AGING, INJURY AND REGENERATION IN PULMONARY FIBROSIS 18/2:00 PM-4:30 PM / Centenni... more D98 EPITHELIAL AGING, INJURY AND REGENERATION IN PULMONARY FIBROSIS 18/2:00 PM-4:30 PM / Centennial Ballroom E (Third Level), Hyatt Regency Denver ... Ets2: Key Mediator Of Lung Microenvironment In Pulmonary Fibrosis ... , L. Moldovan , K. Huang , D. ...
MicroRNA in Regenerative Medicine, 2015
ABSTRACT During the two last decades, the profiling of miRNAs as biomarkers or prognostic factors... more ABSTRACT During the two last decades, the profiling of miRNAs as biomarkers or prognostic factors in disease has become increasingly popular, as changes in tissue miRNA expression appear to manifest in the circulation. The ability to profile circulating miRNAs provides a noninvasive tool for investigating disease-specific miRNAs as novel biomarkers for diagnosis, prognosis, and therapeutic response in the blood. This chapter discusses circulating miRNAs, found in plasma, serum, and a host of other body fluids, as biomarkers and, possibly, as critical regulators of tissue remodeling and repair.
B66. THE FIBROBLAST POOL ON THE MOVE: DERIVATION AND TARGETING, 2012
PLoS ONE, 2012
The pathways inducing the critical transition from compensated hypertrophy to cardiac dilation an... more The pathways inducing the critical transition from compensated hypertrophy to cardiac dilation and failure remain poorly understood. The goal of our study is to determine the role of Rac-induced signaling in this transition process. Our previous results showed that Thyroxin (T4) treatment resulted in increased myocardial Rac expression in wild-type mice and a higher level of expression in Zea maize RacD (ZmRacD) transgenic mice. Our current results showed that T4 treatment induced physiologic cardiac hypertrophy in wild-type mice, as demonstrated by echocardiography and histopathology analyses. This was associated with significant increases in myocardial Rac-GTP, superoxide and ERK1/2 activities. Conversely, echocardiography and histopathology analyses showed that T4 treatment induced dilated cardiomyopathy along with compensatory cardiac hypertrophy in ZmRacD mice. These were linked with further increases in myocardial Rac-GTP, superoxide and ERK1/2 activities. Additionally, there were significant increases in caspase-8 expression and caspase-3 activity. However, there was a significant decrease in p38-MAPK activity. Interestingly, inhibition of myocardial Rac-GTP activity and superoxide generation with pravastatin and carvedilol, respectively, attenuated all functional, structural, and molecular changes associated with the T4-induced cardiomyopathy in ZmRacD mice except the compensatory cardiac hypertrophy. Taken together, T4-induced ZmRacD is a novel mouse model of dilated cardiomyopathy that shares many characteristics with the human disease phenotype. To our knowledge, this is the first study to show graded Rac-mediated O 2 ? 2 results in cardiac phenotype shift in-vivo. Moreover, Rac-mediated O 2 ? 2 generation, cardiomyocyte apoptosis, and myocardial fibrosis seem to play a pivotal role in the transition from cardiac hypertrophy to cardiac dilation and failure. Targeting Rac signaling could represent valuable therapeutic strategy not only in saving the failing myocardium but also to prevent this transition process. Citation: Elnakish MT, Hassona MDH, Alhaj MA, Moldovan L, Janssen PML, et al. (2012) Rac-Induced Left Ventricular Dilation in Thyroxin-Treated ZmRacD Transgenic Mice: Role of Cardiomyocyte Apoptosis and Myocardial Fibrosis. PLoS ONE 7(8): e42500.
PLoS ONE, 2013
In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce la... more In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST) to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work reports some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation. Citation: Voorhees JL, Powell ND, Moldovan L, Mo X, Eubank TD, et al. (2013) Chronic Restraint Stress Upregulates Erythropoiesis through Glucocorticoid Stimulation. PLoS ONE 8(10): e77935.
PLoS ONE, 2014
Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells ... more Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells (CSPCs), have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their coexpressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene), defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p,0.03) with age (R 2 = 20.23), vascular stiffness (R 2 = 20.24), and central aortic pressure (R 2 = 20.19) and positively correlated with body mass index (R 2 = 0.72, in women). The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72622% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional network. Furthermore, the coordinated gene expression in these modules can be linked to cardiovascular risk factors and subclinical cardiovascular disease; thus, this measure may be useful for their diagnosis and prognosis.
Journal of Cellular and Molecular Medicine, 2014
MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of ge... more MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miR-NAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma-and serum-derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
Journal of Cardiovascular Pharmacology, 2013
: Development of cardiac hypertrophy after thyroxin (T4) treatment is well recognized. Recently, ... more : Development of cardiac hypertrophy after thyroxin (T4) treatment is well recognized. Recently, we observed that T4-induced cardiac hypertrophy is associated with increased cardiac Rac1 expression and activity. Whether this Rac1 increase has a role in inducing this cardiac phenotype is, however, still unknown. Here, we showed that T4 treatment (500 µg/kg/d) for 2 weeks resulted in increased myocardial Rac1 activity with subsequent hypertension, cardiac hypertrophy, and left ventricular systolic dysfunction in vivo. Isolated right ventricular papillary muscles of T4-treated mice maintained their peak isometric active developed tension but exhibited significant decreases in their corresponding time to peak and in relaxation times. Positive inotropic responses to increasing pacing rate and β-adrenergic stimulation were also depressed in these muscles. Pravastatin (10 mg/kg/d), a Rac1 inhibitor, significantly decreased myocardial Rac1 activity, hypertension, and cardiomyocyte size in T4-treated mice but could not attenuate gross heart weight or functional cardiac changes in these mice. Our data showed that T4 could activate different signaling pathways with distinct cardiovascular outcomes. We also provide the first mechanistic evidence for the partial involvement of Rac1 activation in T4-induced cardiomyocyte hypertrophy and reveal a putative role for Rac1 in the development of T4-induced hypertension.
The American journal of pathology, 2016
Angiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the ren... more Angiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the renin angiotensin system that regulates the classic renin angiotensin system axis. We aimed to determine whether local retinal overexpression of adenoassociated virus (AAV)-ACE2 prevents or reverses diabetic retinopathy. Green fluorescent protein (GFP)-chimeric mice were generated to distinguish resident (retinal) from infiltrating bone marrow-derived inflammatory cells and were made diabetic using streptozotocin injections. Retinal digestion using trypsin was performed and acellular capillaries enumerated. Capillary occlusion by GFP(+) cells was used to measure leukostasis. Overexpression of ACE2 prevented (prevention cohort: untreated diabetic, 11.3 ± 1.4; ACE2 diabetic, 6.4 ± 0.9 per mm(2)) and partially reversed (reversal cohort: untreated diabetic, 15.7 ± 1.9; ACE2 diabetic, 6.5 ± 1.2 per mm(2)) the diabetes-associated increase of acellular capillaries and the increase of infiltrating ...
Molecular Vision, Sep 1, 2004
We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potenti... more We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potential clinical application in the treatment of proliferative diabetic retinopathy (PDR) and age-related macular degeneration (AMD). We suggest the encapsulation of drugs in implantable sustained release devices, limited by membranes with pores in the tens of nanometers diameter range, which display a slower, quasi-linear release kinetics, and a better selectivity than other membranes. In this paper we explored the feasibility of this approach by testing in vitro several key elements of the nanofilter system: diffusion of drugs of interest, efficacy in producing desirable effects on cells, and biocompatibility of used material with some of the cells encountered in the ocular cavity. We used an aluminum oxide filter (Anopore) with pores of 20 nm as a limiting medium for the administration of drugs. First, we induced an oxidative stress in human retinal endothelial cells (HREC) by treating them with hydrogen peroxide diffused across the filter, in the absence or in the presence of catalase. HREC attached to the culture plate, or emerging as angiogenic sprouts from aggregates embedded in collagen gels, were also exposed to vitamin C or to endostatin delivered across the nanoporous filter. Direct exposure of the cells to the agents served as positive controls. Growth of cells on the filter was considered an indication for biocompatibility. Catalase diffused across the nanoporous membrane counteracted the cytotoxic effect of hydrogen peroxide on HREC. We also found that vitamin C, acting directly or after diffusion across the filter, up to concentrations physiologically present in the eye, was a concentration dependent modulator of HREC's ability to survive and sprout. Additionally, we confirmed the ability of endostatin to block the growth of HREC either attached or sprouting from cell aggregates, after diffusion across the Anopore nanofilter. The drug delivery method based on the administration of angiostatic and antioxidant agents across the inorganic aluminum oxide nanoporous filter passed the key in vitro tests for diffusibility and biocompatibility, opening the way for medical applications.
Archives of Pathology Laboratory Medicine, Apr 1, 2002
To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrati... more To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrative approaches of genomics in cellular physiology. We present a meta-analysis of recently reported results obtained by means of high-throughput technologies (complementary DNA and oligonucleotide arrays, serial analysis of gene expression [SAGE]), as well as more traditional molecular biology approaches (real-time polymerase chain reaction, differential display, and others). Newly published articles identified on PubMed and additional data provided by authors on-line (where available). The impact of genomic analysis on cardiovascular research is already visible. New genes of cardiovascular interest have been discovered, while a number of known genes have been found to be changed in unexpected contexts. The patterns in the variation of expression of many genes correlate well with the models currently used to explain the pathogenesis of cardiovascular diseases. Much more work has yet to be done, however, for the full exploitation of the immense informative potential still dormant in the genomic technologies.
Dynamical Networks in Physics and Biology, 1998
Biomaterials, 2015
Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied ... more Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 μm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not assoc...
Archives of pathology & laboratory medicine, 2002
To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrati... more To evaluate the opportunities afforded cardiovascular medicine by the comprehensive and integrative approaches of genomics in cellular physiology. We present a meta-analysis of recently reported results obtained by means of high-throughput technologies (complementary DNA and oligonucleotide arrays, serial analysis of gene expression [SAGE]), as well as more traditional molecular biology approaches (real-time polymerase chain reaction, differential display, and others). Newly published articles identified on PubMed and additional data provided by authors on-line (where available). The impact of genomic analysis on cardiovascular research is already visible. New genes of cardiovascular interest have been discovered, while a number of known genes have been found to be changed in unexpected contexts. The patterns in the variation of expression of many genes correlate well with the models currently used to explain the pathogenesis of cardiovascular diseases. Much more work has yet to be ...
Gene expression, 1999
A variety of stressful events can trigger the production of free radicals by exposed cells. For y... more A variety of stressful events can trigger the production of free radicals by exposed cells. For years, the effect of such highly reactive radicals was expected to be damaging to cells, altering their biology irreversibly. However, many recent reports have shown that reactive oxygen species can have additional functions, and contribute to important signaling pathways to regulate key biological responses, including cell migration, mitosis, and apoptosis. With this review, we address the role of the small GTP binding protein, Rac, as a regulatory protein that controls superoxide production, and the effect of superoxide and derived oxidants in cell signaling.
Molecular vision, Jan 18, 2004
We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potenti... more We propose a novel method of administration of antiangiogenic and antioxidant drugs, with potential clinical application in the treatment of proliferative diabetic retinopathy (PDR) and age-related macular degeneration (AMD). We suggest the encapsulation of drugs in implantable sustained release devices, limited by membranes with pores in the tens of nanometers diameter range, which display a slower, quasi-linear release kinetics, and a better selectivity than other membranes. In this paper we explored the feasibility of this approach by testing in vitro several key elements of the nanofilter system: diffusion of drugs of interest, efficacy in producing desirable effects on cells, and biocompatibility of used material with some of the cells encountered in the ocular cavity. We used an aluminum oxide filter (Anopore) with pores of 20 nm as a limiting medium for the administration of drugs. First, we induced an oxidative stress in human retinal endothelial cells (HREC) by treating the...
Journal of the American Heart Association, 2013
World Wide Web at:
C108. GENETICS AND FUNCTIONAL GENOMICS OF PULMONARY VASCULAR DISEASE, 2011
Methods in Molecular Biology, 2013
Small extracellular vesicles are released from both healthy and disease cells to facilitate cellu... more Small extracellular vesicles are released from both healthy and disease cells to facilitate cellular communication. They have a wide variety of names including exosomes, microvesicles and microparticles. Depending on their size, very small extracellular vesicles originating from the endocytic pathway have been called exosomes and in some cases nanovesicles. Collectively, extracellular vesicles are important mediators of a wide variety of functions including immune cell development and homeostasis. Encapsulated in the extracellular vesicles are proteins and nucleic acids including mRNA and microRNA molecules. MicroRNAs are small, non-coding RNA molecules implicated in the post-transcriptional control of gene expression that have emerged as important regulatory molecules and are involved in disease pathogenesis including cancer. In some diseases, not only does the quantity and the subpopulations of extracellular vesicles change in the peripheral blood but also microRNAs. Here, we described the analysis of peripheral blood extracellular vesicles by flow cytometry and the RNA extraction from extracellular vesicles isolated from the plasma or serum to profile microRNA expression.
PLoS ONE, 2014
Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the ... more Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2-monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2), the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs) with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pretreated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1a-deficient macrophages differentiated from the bone marrow of HIF-1a fl/fl /LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression. Citation: Forget MA, Voorhees JL, Cole SL, Dakhlallah D, Patterson IL, et al. (2014) Macrophage Colony-Stimulating Factor Augments Tie2-Expressing Monocyte Differentiation, Angiogenic Function, and Recruitment in a Mouse Model of Breast Cancer. PLoS ONE 9(6): e98623.
D98. EPITHELIAL AGING, INJURY AND REGENERATION IN PULMONARY FIBROSIS, 2011
D98 EPITHELIAL AGING, INJURY AND REGENERATION IN PULMONARY FIBROSIS 18/2:00 PM-4:30 PM / Centenni... more D98 EPITHELIAL AGING, INJURY AND REGENERATION IN PULMONARY FIBROSIS 18/2:00 PM-4:30 PM / Centennial Ballroom E (Third Level), Hyatt Regency Denver ... Ets2: Key Mediator Of Lung Microenvironment In Pulmonary Fibrosis ... , L. Moldovan , K. Huang , D. ...
MicroRNA in Regenerative Medicine, 2015
ABSTRACT During the two last decades, the profiling of miRNAs as biomarkers or prognostic factors... more ABSTRACT During the two last decades, the profiling of miRNAs as biomarkers or prognostic factors in disease has become increasingly popular, as changes in tissue miRNA expression appear to manifest in the circulation. The ability to profile circulating miRNAs provides a noninvasive tool for investigating disease-specific miRNAs as novel biomarkers for diagnosis, prognosis, and therapeutic response in the blood. This chapter discusses circulating miRNAs, found in plasma, serum, and a host of other body fluids, as biomarkers and, possibly, as critical regulators of tissue remodeling and repair.
B66. THE FIBROBLAST POOL ON THE MOVE: DERIVATION AND TARGETING, 2012
PLoS ONE, 2012
The pathways inducing the critical transition from compensated hypertrophy to cardiac dilation an... more The pathways inducing the critical transition from compensated hypertrophy to cardiac dilation and failure remain poorly understood. The goal of our study is to determine the role of Rac-induced signaling in this transition process. Our previous results showed that Thyroxin (T4) treatment resulted in increased myocardial Rac expression in wild-type mice and a higher level of expression in Zea maize RacD (ZmRacD) transgenic mice. Our current results showed that T4 treatment induced physiologic cardiac hypertrophy in wild-type mice, as demonstrated by echocardiography and histopathology analyses. This was associated with significant increases in myocardial Rac-GTP, superoxide and ERK1/2 activities. Conversely, echocardiography and histopathology analyses showed that T4 treatment induced dilated cardiomyopathy along with compensatory cardiac hypertrophy in ZmRacD mice. These were linked with further increases in myocardial Rac-GTP, superoxide and ERK1/2 activities. Additionally, there were significant increases in caspase-8 expression and caspase-3 activity. However, there was a significant decrease in p38-MAPK activity. Interestingly, inhibition of myocardial Rac-GTP activity and superoxide generation with pravastatin and carvedilol, respectively, attenuated all functional, structural, and molecular changes associated with the T4-induced cardiomyopathy in ZmRacD mice except the compensatory cardiac hypertrophy. Taken together, T4-induced ZmRacD is a novel mouse model of dilated cardiomyopathy that shares many characteristics with the human disease phenotype. To our knowledge, this is the first study to show graded Rac-mediated O 2 ? 2 results in cardiac phenotype shift in-vivo. Moreover, Rac-mediated O 2 ? 2 generation, cardiomyocyte apoptosis, and myocardial fibrosis seem to play a pivotal role in the transition from cardiac hypertrophy to cardiac dilation and failure. Targeting Rac signaling could represent valuable therapeutic strategy not only in saving the failing myocardium but also to prevent this transition process. Citation: Elnakish MT, Hassona MDH, Alhaj MA, Moldovan L, Janssen PML, et al. (2012) Rac-Induced Left Ventricular Dilation in Thyroxin-Treated ZmRacD Transgenic Mice: Role of Cardiomyocyte Apoptosis and Myocardial Fibrosis. PLoS ONE 7(8): e42500.
PLoS ONE, 2013
In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce la... more In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST) to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work reports some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation. Citation: Voorhees JL, Powell ND, Moldovan L, Mo X, Eubank TD, et al. (2013) Chronic Restraint Stress Upregulates Erythropoiesis through Glucocorticoid Stimulation. PLoS ONE 8(10): e77935.
PLoS ONE, 2014
Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells ... more Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells (CSPCs), have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their coexpressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene), defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p,0.03) with age (R 2 = 20.23), vascular stiffness (R 2 = 20.24), and central aortic pressure (R 2 = 20.19) and positively correlated with body mass index (R 2 = 0.72, in women). The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72622% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional network. Furthermore, the coordinated gene expression in these modules can be linked to cardiovascular risk factors and subclinical cardiovascular disease; thus, this measure may be useful for their diagnosis and prognosis.
Journal of Cellular and Molecular Medicine, 2014
MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of ge... more MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miR-NAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma-and serum-derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
Journal of Cardiovascular Pharmacology, 2013
: Development of cardiac hypertrophy after thyroxin (T4) treatment is well recognized. Recently, ... more : Development of cardiac hypertrophy after thyroxin (T4) treatment is well recognized. Recently, we observed that T4-induced cardiac hypertrophy is associated with increased cardiac Rac1 expression and activity. Whether this Rac1 increase has a role in inducing this cardiac phenotype is, however, still unknown. Here, we showed that T4 treatment (500 µg/kg/d) for 2 weeks resulted in increased myocardial Rac1 activity with subsequent hypertension, cardiac hypertrophy, and left ventricular systolic dysfunction in vivo. Isolated right ventricular papillary muscles of T4-treated mice maintained their peak isometric active developed tension but exhibited significant decreases in their corresponding time to peak and in relaxation times. Positive inotropic responses to increasing pacing rate and β-adrenergic stimulation were also depressed in these muscles. Pravastatin (10 mg/kg/d), a Rac1 inhibitor, significantly decreased myocardial Rac1 activity, hypertension, and cardiomyocyte size in T4-treated mice but could not attenuate gross heart weight or functional cardiac changes in these mice. Our data showed that T4 could activate different signaling pathways with distinct cardiovascular outcomes. We also provide the first mechanistic evidence for the partial involvement of Rac1 activation in T4-induced cardiomyocyte hypertrophy and reveal a putative role for Rac1 in the development of T4-induced hypertension.