Jay Rajasekera | International University of Japan (original) (raw)

Papers by Jay Rajasekera

Research paper thumbnail of Outline of a quality plan for industrial research and development projects

Quality Engineering, 1991

As companies pay more attention to improving quality in manufacturing, there is increasing concer... more As companies pay more attention to improving quality in manufacturing, there is increasing concern that the same should be done in research and development (R&D), particularly when the R&D projects in a company are directly geared to manufacturing. However, to improve project quality it must first be identified and associated with the relevant customers as the project progresses though various stages. Not identifying quality correctly the first time can be very costly for a company. An analysis is provided here for quality issues associated with projects in an industrial research laboratory. Through the application of analytic hierarchy process (AHP), a planning and decision making tool, a quality plan is constructed and activities of industrial research projects are brought under a common umbrella to identify the most important quality aspects of customers. The scoring mechanism developed here is a very useful tool for quality monitoring purposes. The way a quality plan is structured can be especially useful for computerizing activities in order to monitor the progress of a large number of projects.

Research paper thumbnail of Entropy Optimization Methods: General Convex Case

International series in management science/operations research, 1997

Let q = (q 1,…, q n ) T ≥ 0 and p ≡ (p 1,…, p n ) T > 0 be two probability distribution functi... more Let q = (q 1,…, q n ) T ≥ 0 and p ≡ (p 1,…, p n ) T > 0 be two probability distribution functions. With the convention of 0 ln 0 = 0, in Chapter 1, we defined the quantity \(\sum _{j = 1}^n{q_j}\ln ({q_j}/{p_j})\) to be the cross-entropy of q with respect to p. In this chapter, we study three classes of minimum cross-entropy problems, namely, 1) minimizing cross-entropy subject to quadratic constraints, 2) minimizing cross-entropy subject to entropic constraints, and 3) minimizing cross-entropy subject to convex constraints.

Research paper thumbnail of Extensions and Related Results

International series in management science/operations research, 1997

This chapter discusses extensions of the methods developed in previous chapters and discusses som... more This chapter discusses extensions of the methods developed in previous chapters and discusses some closely related subjects, including (i) Entropy optimization problems with a finite number of constraints but a countably infinite number of variables, (ii) A relationship between entropy optimization and Bayesian statistical estimation, (iii) Entropic regularization method for solving min-max problems, and (iv) Entropic regularization method for solving semi-infinite min-max problems.

Research paper thumbnail of Quadratically constrained information theoretic analysis

International Journal of Systems Science, Mar 1, 1990

Recently Zhang and Brockett extended the framework of‘minimum discrimination information’ (MDI) e... more Recently Zhang and Brockett extended the framework of‘minimum discrimination information’ (MDI) estimation techniques to include quadratic constraints. They claimed their approach was quite different from the usual Lagrange duality theory. We show that the dual problem obtained by Zhang and Brockett is actually a geometric dual. Hence the quadratically constrained MDI estimation can be enriched by the theory of generalized geometric programming.

Research paper thumbnail of Entropic Perturbation Approach to Mathematical Programming

International series in management science/operations research, 1997

The barrier and penalty function methods for solving mathematical programming problems have been ... more The barrier and penalty function methods for solving mathematical programming problems have been widely used for both theoretical and computational purposes. In a penalty approach, any point outside of the feasible region is assigned a penalty while, in a barrier approach, those feasible solutions near the boundary of the feasible region are subject to a penalty. Both approaches are designed to prevent the search process for an optimal solution from wondering away from the feasible region. They can be considered as an objective-perturbation approach. This chapter studies the objective-perturbation approach by using the entropic function, \(\sum {_j x_j \ln x_j } \) for solving four classes of problems, namely, linear programming problems in Karmarkar’s form, linear programming programs in standard form, convex quadratic programming problems, and linear and convex quadratic semi-infinite programming problems.

Research paper thumbnail of Controlled dual perturbations for l p -programming

ZOR. Zeitschrift für Operations-Research, 1986

/p-programming is a common generalization of linear programming, quadratically constrained quadra... more /p-programming is a common generalization of linear programming, quadratically constrained quadratic programming,/p-constrained /p-approximation, and multiple criteria compromise programming. It is a type of convex programming with objective function and inequality constraints expressed by means of/p-norms. The dual program established by Peterson and Ecker is a maximization problem with a concave, upper-semicontinuous objective function over a set of constraints that are essentially linear. In developing a dual method for this problem, we face two major difficulties. One is the non-differentiability of the dual objective function and the other one is an efficient dual-to-primal conversion. In this paper, we introduce a mechanism to construct a suitably perturbed dual program with a differentiable concave objective function over linear constraints. Solving this well-constructed perturbed dual program, we can obtain an e-optimal dual solution for an arbitrarily small number e. Moreover, we show a way of constructing a linear program based on this dual solution. Then an e-optimal primal solution can be obtained by solving the dual of this simple linear program. Zusammenfassung: Die lp-Optimierung ist eine Verallgemeinerung, die die lineare Optimierung, quadratisehe Optimierung mit quadratischen Restriktionen,/p-Approximation mit lp-Restriktionen, wie aueh Vektoroptimierung umfagt. Es handelt sich dabei um konvexe Optimierungsaufgaben, bei denen Zielfunktions-und Ungleichungsrestriktionen mittels lp-Notmen ausgedriickt werden. Das duale Problem nach Peterson and Eckert ist ein Maximierungsproblem mit einer konkaven oberhalb-halbstetigen Zielfunktion fiber einer Menge yon im wesentlichen linearen Restrictionen. Bei der Entwicklung einer dualen L6sungsmethode treten zwei Hauptschwierigkeiten auf: Die eine ist die Nicht-Differenzierbarkeit der dualen Zielfunktion, die andere besteht darin, eine effiziente 13bertragung der dualen L6sung in eine primale zu finden. In dieser Arbeit ffihren wir eine Methode ein, die es gestattet, ein entsprechendes gest6rtes duales Prograrnm mit differenzierbarer konkaver Zielfunktion und linearen Restriktion aufzustellen. Bei der L6sung dieses wohl-strukturierten, gest6rten dualen Problems erhalten wit eine e-optimale DuaU6sung f'fir beliebig kleines ~. Ferner zeigen wit einen Weg auf, wie, basierend auf dieser Dual-16sung, ein lineares Programm formuliert werden kann. L6st man das Dualproblem dieses einfachen linearen Programms, so erhiilt man eine e-optimale L6sung ffir das Ausgangsproblem.

Research paper thumbnail of Methods for forecasting from intentions data

AIDS, 2001

... While these scales vary considerably, for the purposes of this chapter, I will refer to all o... more ... While these scales vary considerably, for the purposes of this chapter, I will refer to all of these types of scales as intentions scales. ... Kalwani and Silk (1982) discuss the general issue of whether more scale points are bet-ter. ...

Research paper thumbnail of Electronic Commerce and Its Implication to Tax Authorities: A Study of the Directorate General of Taxes of the Republic of Indonesia

Research paper thumbnail of Information System Success Model and the Role of Trusting Beliefs in Indonesian Tax Information System

Research paper thumbnail of User Acceptance Towards the Finance and Asset Monitoring Information System in the Ministry of Finance Og the Republic of Indonesia

Research paper thumbnail of Measuring the Account Representatives' Satisfaction Toward Webased Tax Payers Profile (Approweb) Applications

Research paper thumbnail of A due-date assignment model for a flow shop with application in a lightguide cable shop

Journal of Manufacturing Systems, 1991

Due-date assignment is an important problem in a manufacturing facility known as a flow shop, whi... more Due-date assignment is an important problem in a manufacturing facility known as a flow shop, which is capable of making a wide variety of products. In a CIM environment, a flow shop is integrated through a factory information system. In this paper, we describe a due-date assignment model using techniques from optimization and queuing theories. Optimization techniques are discussed for the model's application in a lightguide cable manufacturing shop. This model, integrated with an information system, is used daily to assign due-dates for hundreds of cable orders. When the response time for a customer request must be short, this model, after surveying the shop conditions, provides fast due-date assignment.

Research paper thumbnail of Entropy Optimization Methods: Linear Case

International series in management science/operations research, 1997

Let x ≡ (x 1,…,x n ) T ≥ 0 be a nonnegative n-dimensional column vector and p ≡ (p 1,…,p n ) T &g... more Let x ≡ (x 1,…,x n ) T ≥ 0 be a nonnegative n-dimensional column vector and p ≡ (p 1,…,p n ) T > 0 be a positive n-dimensional column vector. With the convention of 0 ln 0 = 0, we define the quantity \(\sum _{j = 1}^n{x_j}\ln ({x_j}/{p_j})\) to be the cross-entropy of x with respect to p, in a general sense. Note that when x and p are both probability distributions, i.e., \(\sum _{j = 1}^n{x_j} = \sum _{j = 1}^n{p_j} = 1\) this quantity becomes the commonly defined cross-entropy between the two probability distributions (see Chapter 1).

Research paper thumbnail of Introduction to Entropy and Entropy Optimization Principles

International series in management science/operations research, 1997

This chapter provides a historical perspective of the concept of entropy, Shannon’s reasoning, an... more This chapter provides a historical perspective of the concept of entropy, Shannon’s reasoning, and the axioms that justify the principles of entropy optimization, namely, the maximum entropy and minimum cross-entropy principles. The mathematical forms of various entropy optimization problems are also discussed along with references to the existing literature. The chapter consists of two sections. Section 1.1 introduces the concept of entropy, and Section 1.2 classifies different entropy optimization problems to be studied in this book.

Research paper thumbnail of Entropy Optimization Models

International series in management science/operations research, 1997

Entropy optimization models have been successfully applied to practical problems in many scientif... more Entropy optimization models have been successfully applied to practical problems in many scientific and engineering disciplines. As noted in Chapter 1, those disciplines include statistical mechanics, thermodynamics, statistical parameter estimation and inference, economics, business and finance, nonlinear spectral analysis, pattern recognition, transportation, urban and regional planning, queueing theory, and linear and nonlinear programming. Included in this book are example applications in the areas of (1) queueing theory, (2) transportation planning, (3) input-output analysis, (4) regional planning, (5) investment portfolio optimization, and (6) image reconstruction. They are discussed in six sections, from Sections 2.1 through 2.6.

Research paper thumbnail of Using Kansei Engineering with new JIT to accomplish cost advantage

International Journal of Biometrics, 2010

Research paper thumbnail of Deriving an unconstrained convex program for linear programming

Journal of Optimization Theory and Applications, Dec 1, 1992

Consider a linear programming problem in Karmarkar's standard form, By perturbing its linear obje... more Consider a linear programming problem in Karmarkar's standard form, By perturbing its linear objective function with an entropic barrier function and applying generalized geometric programming theory to it, Fang recently proposed an unconstrained convex programming approach to finding an epsilon-optimal solution. In this paper, we show that Fang's derivation of an unconstrained convex dual program can be greatly simplified by using only one simple geometric inequality. In addition, a system of nonlinear equations, which leads to a pair of primal and dual epsilon-optimal solutions, is proposed for further investigation.

Research paper thumbnail of Analysis of Government Funding Performance on Economic Growth and Human Development Index in Indonesia

Ekuilibrium : Jurnal Ilmiah Bidang Ilmu Ekonomi

Economic growth shows the extent to which economic activity will generate additional public incom... more Economic growth shows the extent to which economic activity will generate additional public income in a certain period, that is, an economy is said to experience growth if the real income of the community in a certain year is greater than the real income of the community in the previous year. Economic growth is the most important factor in development that determines the success of the development of a region/region which is measured based on the high or low levels of economic growth achieved. This study aims to analyze the effect of General Allocation Funds (DAU), Special Allocation Funds (DAK) and Revenue Sharing Funds (DBH) on Economic Growth and Human Development Index (IPM). The object of research was carried out in South Halmahera Regency in 2012-2021 using the multiple linear regression analysis testing method. The results show that the influence of the General Allocation Fund, the Special Allocation Fund and the Profit Sharing Fund simultaneously influence Economic Growth wi...

Research paper thumbnail of Export Potential Analysis of Vietnamese Bottled Coconut Water by Incorporating Criteria Weights of MCDM into the Gravity of Trade Model

Sustainability

Vietnam, an emerging economy, leads the Southeast Asian region in terms of the growth rate of coc... more Vietnam, an emerging economy, leads the Southeast Asian region in terms of the growth rate of coconut production; yet, its sustainability is questionable because Vietnam lacks a credible strategy to reap the benefits of its export potential. While the literature is rich with studies on coconut-related export competitiveness and readiness, it seems that studies focused on a single set of factors, and very few studies take Vietnam as a case study for analysis. Studies we found use aggregate data for econometric analysis. On the contrary, this study attempts to address the literature’s gaps by proposing a comprehensive view of key factors identifying the export potential of bottled coconut water. It also adds to our comprehension of how large- and small-scale manufacturers prioritize factors differently. To answer the research questions, we collect qualitative and quantitative data for analysis. We use AHP and M-CRITIC-RP methods for ranking the factors. This study also incorporates th...

Research paper thumbnail of Does basic infrastructure development have an impact on economic growth?

Indonesia Auditing Research Journal

This study aims to determine the effect of (1) road infrastructure on economic growth (2) clean w... more This study aims to determine the effect of (1) road infrastructure on economic growth (2) clean water infrastructure on economic growth (3) electricity infrastructure on economic growth. The data used is sourced from BPS Ternate City from 2005-2017. The research data used is quantitative data. The type of data used in this research is secondary data and time series. The testing technique used is multiple regression analysis. The test results of this study have a simultaneous effect on the three variables being tested. While partially testing the variables of road infrastructure, clean water and electricity effect on economic growth

Research paper thumbnail of Outline of a quality plan for industrial research and development projects

Quality Engineering, 1991

As companies pay more attention to improving quality in manufacturing, there is increasing concer... more As companies pay more attention to improving quality in manufacturing, there is increasing concern that the same should be done in research and development (R&D), particularly when the R&D projects in a company are directly geared to manufacturing. However, to improve project quality it must first be identified and associated with the relevant customers as the project progresses though various stages. Not identifying quality correctly the first time can be very costly for a company. An analysis is provided here for quality issues associated with projects in an industrial research laboratory. Through the application of analytic hierarchy process (AHP), a planning and decision making tool, a quality plan is constructed and activities of industrial research projects are brought under a common umbrella to identify the most important quality aspects of customers. The scoring mechanism developed here is a very useful tool for quality monitoring purposes. The way a quality plan is structured can be especially useful for computerizing activities in order to monitor the progress of a large number of projects.

Research paper thumbnail of Entropy Optimization Methods: General Convex Case

International series in management science/operations research, 1997

Let q = (q 1,…, q n ) T ≥ 0 and p ≡ (p 1,…, p n ) T > 0 be two probability distribution functi... more Let q = (q 1,…, q n ) T ≥ 0 and p ≡ (p 1,…, p n ) T > 0 be two probability distribution functions. With the convention of 0 ln 0 = 0, in Chapter 1, we defined the quantity \(\sum _{j = 1}^n{q_j}\ln ({q_j}/{p_j})\) to be the cross-entropy of q with respect to p. In this chapter, we study three classes of minimum cross-entropy problems, namely, 1) minimizing cross-entropy subject to quadratic constraints, 2) minimizing cross-entropy subject to entropic constraints, and 3) minimizing cross-entropy subject to convex constraints.

Research paper thumbnail of Extensions and Related Results

International series in management science/operations research, 1997

This chapter discusses extensions of the methods developed in previous chapters and discusses som... more This chapter discusses extensions of the methods developed in previous chapters and discusses some closely related subjects, including (i) Entropy optimization problems with a finite number of constraints but a countably infinite number of variables, (ii) A relationship between entropy optimization and Bayesian statistical estimation, (iii) Entropic regularization method for solving min-max problems, and (iv) Entropic regularization method for solving semi-infinite min-max problems.

Research paper thumbnail of Quadratically constrained information theoretic analysis

International Journal of Systems Science, Mar 1, 1990

Recently Zhang and Brockett extended the framework of‘minimum discrimination information’ (MDI) e... more Recently Zhang and Brockett extended the framework of‘minimum discrimination information’ (MDI) estimation techniques to include quadratic constraints. They claimed their approach was quite different from the usual Lagrange duality theory. We show that the dual problem obtained by Zhang and Brockett is actually a geometric dual. Hence the quadratically constrained MDI estimation can be enriched by the theory of generalized geometric programming.

Research paper thumbnail of Entropic Perturbation Approach to Mathematical Programming

International series in management science/operations research, 1997

The barrier and penalty function methods for solving mathematical programming problems have been ... more The barrier and penalty function methods for solving mathematical programming problems have been widely used for both theoretical and computational purposes. In a penalty approach, any point outside of the feasible region is assigned a penalty while, in a barrier approach, those feasible solutions near the boundary of the feasible region are subject to a penalty. Both approaches are designed to prevent the search process for an optimal solution from wondering away from the feasible region. They can be considered as an objective-perturbation approach. This chapter studies the objective-perturbation approach by using the entropic function, \(\sum {_j x_j \ln x_j } \) for solving four classes of problems, namely, linear programming problems in Karmarkar’s form, linear programming programs in standard form, convex quadratic programming problems, and linear and convex quadratic semi-infinite programming problems.

Research paper thumbnail of Controlled dual perturbations for l p -programming

ZOR. Zeitschrift für Operations-Research, 1986

/p-programming is a common generalization of linear programming, quadratically constrained quadra... more /p-programming is a common generalization of linear programming, quadratically constrained quadratic programming,/p-constrained /p-approximation, and multiple criteria compromise programming. It is a type of convex programming with objective function and inequality constraints expressed by means of/p-norms. The dual program established by Peterson and Ecker is a maximization problem with a concave, upper-semicontinuous objective function over a set of constraints that are essentially linear. In developing a dual method for this problem, we face two major difficulties. One is the non-differentiability of the dual objective function and the other one is an efficient dual-to-primal conversion. In this paper, we introduce a mechanism to construct a suitably perturbed dual program with a differentiable concave objective function over linear constraints. Solving this well-constructed perturbed dual program, we can obtain an e-optimal dual solution for an arbitrarily small number e. Moreover, we show a way of constructing a linear program based on this dual solution. Then an e-optimal primal solution can be obtained by solving the dual of this simple linear program. Zusammenfassung: Die lp-Optimierung ist eine Verallgemeinerung, die die lineare Optimierung, quadratisehe Optimierung mit quadratischen Restriktionen,/p-Approximation mit lp-Restriktionen, wie aueh Vektoroptimierung umfagt. Es handelt sich dabei um konvexe Optimierungsaufgaben, bei denen Zielfunktions-und Ungleichungsrestriktionen mittels lp-Notmen ausgedriickt werden. Das duale Problem nach Peterson and Eckert ist ein Maximierungsproblem mit einer konkaven oberhalb-halbstetigen Zielfunktion fiber einer Menge yon im wesentlichen linearen Restrictionen. Bei der Entwicklung einer dualen L6sungsmethode treten zwei Hauptschwierigkeiten auf: Die eine ist die Nicht-Differenzierbarkeit der dualen Zielfunktion, die andere besteht darin, eine effiziente 13bertragung der dualen L6sung in eine primale zu finden. In dieser Arbeit ffihren wir eine Methode ein, die es gestattet, ein entsprechendes gest6rtes duales Prograrnm mit differenzierbarer konkaver Zielfunktion und linearen Restriktion aufzustellen. Bei der L6sung dieses wohl-strukturierten, gest6rten dualen Problems erhalten wit eine e-optimale DuaU6sung f'fir beliebig kleines ~. Ferner zeigen wit einen Weg auf, wie, basierend auf dieser Dual-16sung, ein lineares Programm formuliert werden kann. L6st man das Dualproblem dieses einfachen linearen Programms, so erhiilt man eine e-optimale L6sung ffir das Ausgangsproblem.

Research paper thumbnail of Methods for forecasting from intentions data

AIDS, 2001

... While these scales vary considerably, for the purposes of this chapter, I will refer to all o... more ... While these scales vary considerably, for the purposes of this chapter, I will refer to all of these types of scales as intentions scales. ... Kalwani and Silk (1982) discuss the general issue of whether more scale points are bet-ter. ...

Research paper thumbnail of Electronic Commerce and Its Implication to Tax Authorities: A Study of the Directorate General of Taxes of the Republic of Indonesia

Research paper thumbnail of Information System Success Model and the Role of Trusting Beliefs in Indonesian Tax Information System

Research paper thumbnail of User Acceptance Towards the Finance and Asset Monitoring Information System in the Ministry of Finance Og the Republic of Indonesia

Research paper thumbnail of Measuring the Account Representatives' Satisfaction Toward Webased Tax Payers Profile (Approweb) Applications

Research paper thumbnail of A due-date assignment model for a flow shop with application in a lightguide cable shop

Journal of Manufacturing Systems, 1991

Due-date assignment is an important problem in a manufacturing facility known as a flow shop, whi... more Due-date assignment is an important problem in a manufacturing facility known as a flow shop, which is capable of making a wide variety of products. In a CIM environment, a flow shop is integrated through a factory information system. In this paper, we describe a due-date assignment model using techniques from optimization and queuing theories. Optimization techniques are discussed for the model's application in a lightguide cable manufacturing shop. This model, integrated with an information system, is used daily to assign due-dates for hundreds of cable orders. When the response time for a customer request must be short, this model, after surveying the shop conditions, provides fast due-date assignment.

Research paper thumbnail of Entropy Optimization Methods: Linear Case

International series in management science/operations research, 1997

Let x ≡ (x 1,…,x n ) T ≥ 0 be a nonnegative n-dimensional column vector and p ≡ (p 1,…,p n ) T &g... more Let x ≡ (x 1,…,x n ) T ≥ 0 be a nonnegative n-dimensional column vector and p ≡ (p 1,…,p n ) T > 0 be a positive n-dimensional column vector. With the convention of 0 ln 0 = 0, we define the quantity \(\sum _{j = 1}^n{x_j}\ln ({x_j}/{p_j})\) to be the cross-entropy of x with respect to p, in a general sense. Note that when x and p are both probability distributions, i.e., \(\sum _{j = 1}^n{x_j} = \sum _{j = 1}^n{p_j} = 1\) this quantity becomes the commonly defined cross-entropy between the two probability distributions (see Chapter 1).

Research paper thumbnail of Introduction to Entropy and Entropy Optimization Principles

International series in management science/operations research, 1997

This chapter provides a historical perspective of the concept of entropy, Shannon’s reasoning, an... more This chapter provides a historical perspective of the concept of entropy, Shannon’s reasoning, and the axioms that justify the principles of entropy optimization, namely, the maximum entropy and minimum cross-entropy principles. The mathematical forms of various entropy optimization problems are also discussed along with references to the existing literature. The chapter consists of two sections. Section 1.1 introduces the concept of entropy, and Section 1.2 classifies different entropy optimization problems to be studied in this book.

Research paper thumbnail of Entropy Optimization Models

International series in management science/operations research, 1997

Entropy optimization models have been successfully applied to practical problems in many scientif... more Entropy optimization models have been successfully applied to practical problems in many scientific and engineering disciplines. As noted in Chapter 1, those disciplines include statistical mechanics, thermodynamics, statistical parameter estimation and inference, economics, business and finance, nonlinear spectral analysis, pattern recognition, transportation, urban and regional planning, queueing theory, and linear and nonlinear programming. Included in this book are example applications in the areas of (1) queueing theory, (2) transportation planning, (3) input-output analysis, (4) regional planning, (5) investment portfolio optimization, and (6) image reconstruction. They are discussed in six sections, from Sections 2.1 through 2.6.

Research paper thumbnail of Using Kansei Engineering with new JIT to accomplish cost advantage

International Journal of Biometrics, 2010

Research paper thumbnail of Deriving an unconstrained convex program for linear programming

Journal of Optimization Theory and Applications, Dec 1, 1992

Consider a linear programming problem in Karmarkar's standard form, By perturbing its linear obje... more Consider a linear programming problem in Karmarkar's standard form, By perturbing its linear objective function with an entropic barrier function and applying generalized geometric programming theory to it, Fang recently proposed an unconstrained convex programming approach to finding an epsilon-optimal solution. In this paper, we show that Fang's derivation of an unconstrained convex dual program can be greatly simplified by using only one simple geometric inequality. In addition, a system of nonlinear equations, which leads to a pair of primal and dual epsilon-optimal solutions, is proposed for further investigation.

Research paper thumbnail of Analysis of Government Funding Performance on Economic Growth and Human Development Index in Indonesia

Ekuilibrium : Jurnal Ilmiah Bidang Ilmu Ekonomi

Economic growth shows the extent to which economic activity will generate additional public incom... more Economic growth shows the extent to which economic activity will generate additional public income in a certain period, that is, an economy is said to experience growth if the real income of the community in a certain year is greater than the real income of the community in the previous year. Economic growth is the most important factor in development that determines the success of the development of a region/region which is measured based on the high or low levels of economic growth achieved. This study aims to analyze the effect of General Allocation Funds (DAU), Special Allocation Funds (DAK) and Revenue Sharing Funds (DBH) on Economic Growth and Human Development Index (IPM). The object of research was carried out in South Halmahera Regency in 2012-2021 using the multiple linear regression analysis testing method. The results show that the influence of the General Allocation Fund, the Special Allocation Fund and the Profit Sharing Fund simultaneously influence Economic Growth wi...

Research paper thumbnail of Export Potential Analysis of Vietnamese Bottled Coconut Water by Incorporating Criteria Weights of MCDM into the Gravity of Trade Model

Sustainability

Vietnam, an emerging economy, leads the Southeast Asian region in terms of the growth rate of coc... more Vietnam, an emerging economy, leads the Southeast Asian region in terms of the growth rate of coconut production; yet, its sustainability is questionable because Vietnam lacks a credible strategy to reap the benefits of its export potential. While the literature is rich with studies on coconut-related export competitiveness and readiness, it seems that studies focused on a single set of factors, and very few studies take Vietnam as a case study for analysis. Studies we found use aggregate data for econometric analysis. On the contrary, this study attempts to address the literature’s gaps by proposing a comprehensive view of key factors identifying the export potential of bottled coconut water. It also adds to our comprehension of how large- and small-scale manufacturers prioritize factors differently. To answer the research questions, we collect qualitative and quantitative data for analysis. We use AHP and M-CRITIC-RP methods for ranking the factors. This study also incorporates th...

Research paper thumbnail of Does basic infrastructure development have an impact on economic growth?

Indonesia Auditing Research Journal

This study aims to determine the effect of (1) road infrastructure on economic growth (2) clean w... more This study aims to determine the effect of (1) road infrastructure on economic growth (2) clean water infrastructure on economic growth (3) electricity infrastructure on economic growth. The data used is sourced from BPS Ternate City from 2005-2017. The research data used is quantitative data. The type of data used in this research is secondary data and time series. The testing technique used is multiple regression analysis. The test results of this study have a simultaneous effect on the three variables being tested. While partially testing the variables of road infrastructure, clean water and electricity effect on economic growth