Ananta Gajurel | Tribhuvan University, Tri-Chandra College (original) (raw)
Uploads
Papers by Ananta Gajurel
Annual Meeting of the Geological Society of Japan, 2001
arXiv: Geophysics, 2020
In April and May 2019, as a part of the National Geographic and Roxel Perpetual Planet Everest Ex... more In April and May 2019, as a part of the National Geographic and Roxel Perpetual Planet Everest Expedition, the most interdisciplinary scientific ever was launched. This research identified changing dynamics, including emergent risks resulting from natural and anthropogenic change to the natural system. We have identified compounded risks to ecosystem and human health, geologic hazards, and changing climate conditions that impact the local community, climbers, and trekkeers in the future. This review brings together perspectives from across the biological, geological, and health sciences to better understand emergent risks on Mt. Everest and in the Khumbu region. Understanding and mitigating these risks is critical for the ~10,000 people living in the Khumbu region, as well as the thousands of visiting trekkers and the hundreds of climbers who attempt to summit each year.
Geophysical Research Letters, 2020
Journal of Nepal Geological Society, 2011
Journal of Nepal Geological Society, 2011
iScience, 2021
Summary The Everest region is characterized by its alpine glacial environment. In an effort to un... more Summary The Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods. Core grain size characteristics and internal sedimentary structures from computed tomographic scan were coupled with radiocarbon dating of organic matter preserved in the core to reconstruct the environmental history of the area. The 58-cm-long core consists of laminated silty sands and sandy silts with particle diameters <2 mm. The core records a syn-sedimentary deformational structure, folded sediments, rhythmically alternating dark- and light-colored laminations, and turbidites, which indicate coeval climatic and tectonic variations over the past ∼1,600 years.
Annual Meeting of the Geological Society of Japan, 2001
arXiv: Geophysics, 2020
In April and May 2019, as a part of the National Geographic and Roxel Perpetual Planet Everest Ex... more In April and May 2019, as a part of the National Geographic and Roxel Perpetual Planet Everest Expedition, the most interdisciplinary scientific ever was launched. This research identified changing dynamics, including emergent risks resulting from natural and anthropogenic change to the natural system. We have identified compounded risks to ecosystem and human health, geologic hazards, and changing climate conditions that impact the local community, climbers, and trekkeers in the future. This review brings together perspectives from across the biological, geological, and health sciences to better understand emergent risks on Mt. Everest and in the Khumbu region. Understanding and mitigating these risks is critical for the ~10,000 people living in the Khumbu region, as well as the thousands of visiting trekkers and the hundreds of climbers who attempt to summit each year.
Geophysical Research Letters, 2020
Journal of Nepal Geological Society, 2011
Journal of Nepal Geological Society, 2011
iScience, 2021
Summary The Everest region is characterized by its alpine glacial environment. In an effort to un... more Summary The Everest region is characterized by its alpine glacial environment. In an effort to understand environmental change and tectonic activity, our team cored Taboche Lake, situated at 4,712 m along the western margin of the Ngozumpa Glacier. This research catalogs past earthquakes using geological records of the lake core that are important for the assessment of future earthquake hazards in the region and provides information for tectonic risk of glacial lake floods. Core grain size characteristics and internal sedimentary structures from computed tomographic scan were coupled with radiocarbon dating of organic matter preserved in the core to reconstruct the environmental history of the area. The 58-cm-long core consists of laminated silty sands and sandy silts with particle diameters <2 mm. The core records a syn-sedimentary deformational structure, folded sediments, rhythmically alternating dark- and light-colored laminations, and turbidites, which indicate coeval climatic and tectonic variations over the past ∼1,600 years.