Keras documentation: Structured data classification from scratch (original) (raw)
Author: fchollet
Date created: 2020/06/09
Last modified: 2020/06/09
Description: Binary classification of structured data including numerical and categorical features.
Introduction
This example demonstrates how to do structured data classification, starting from a raw CSV file. Our data includes both numerical and categorical features. We will use Keras preprocessing layers to normalize the numerical features and vectorize the categorical ones.
Note that this example should be run with TensorFlow 2.5 or higher.
The dataset
Our dataset is provided by the Cleveland Clinic Foundation for Heart Disease. It's a CSV file with 303 rows. Each row contains information about a patient (asample), and each column describes an attribute of the patient (a feature). We use the features to predict whether a patient has a heart disease (binary classification).
Here's the description of each feature:
Column | Description | Feature Type |
---|---|---|
Age | Age in years | Numerical |
Sex | (1 = male; 0 = female) | Categorical |
CP | Chest pain type (0, 1, 2, 3, 4) | Categorical |
Trestbpd | Resting blood pressure (in mm Hg on admission) | Numerical |
Chol | Serum cholesterol in mg/dl | Numerical |
FBS | fasting blood sugar in 120 mg/dl (1 = true; 0 = false) | Categorical |
RestECG | Resting electrocardiogram results (0, 1, 2) | Categorical |
Thalach | Maximum heart rate achieved | Numerical |
Exang | Exercise induced angina (1 = yes; 0 = no) | Categorical |
Oldpeak | ST depression induced by exercise relative to rest | Numerical |
Slope | Slope of the peak exercise ST segment | Numerical |
CA | Number of major vessels (0-3) colored by fluoroscopy | Both numerical & categorical |
Thal | 3 = normal; 6 = fixed defect; 7 = reversible defect | Categorical |
Target | Diagnosis of heart disease (1 = true; 0 = false) | Target |
Setup
`import os
os.environ["KERAS_BACKEND"] = "torch" # or torch, or tensorflow
import pandas as pd import keras from keras import layers `
Preparing the data
Let's download the data and load it into a Pandas dataframe:
file_url = "http://storage.googleapis.com/download.tensorflow.org/data/heart.csv" dataframe = pd.read_csv(file_url)
The dataset includes 303 samples with 14 columns per sample (13 features, plus the target label):
Here's a preview of a few samples:
age | sex | cp | trestbps | chol | fbs | restecg | thalach | exang | oldpeak | slope | ca | thal | target | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 63 | 1 | 1 | 145 | 233 | 1 | 2 | 150 | 0 | 2.3 | 3 | 0 | fixed | 0 |
1 | 67 | 1 | 4 | 160 | 286 | 0 | 2 | 108 | 1 | 1.5 | 2 | 3 | normal | 1 |
2 | 67 | 1 | 4 | 120 | 229 | 0 | 2 | 129 | 1 | 2.6 | 2 | 2 | reversible | 0 |
3 | 37 | 1 | 3 | 130 | 250 | 0 | 0 | 187 | 0 | 3.5 | 3 | 0 | normal | 0 |
4 | 41 | 0 | 2 | 130 | 204 | 0 | 2 | 172 | 0 | 1.4 | 1 | 0 | normal | 0 |
The last column, "target", indicates whether the patient has a heart disease (1) or not (0).
Let's split the data into a training and validation set:
`val_dataframe = dataframe.sample(frac=0.2, random_state=1337) train_dataframe = dataframe.drop(val_dataframe.index)
print( f"Using {len(train_dataframe)} samples for training " f"and {len(val_dataframe)} for validation" ) `
Using 242 samples for training and 61 for validation
Here, we define the metadata of the dataset that will be useful for reading and parsing the data into input features, and encoding the input features with respect to their types.
`COLUMN_NAMES = [ "age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "target", ]
Target feature name.
TARGET_FEATURE_NAME = "target"
Numeric feature names.
NUMERIC_FEATURE_NAMES = ["age", "trestbps", "thalach", "oldpeak", "slope", "chol"]
Categorical features and their vocabulary lists.
Note that we add 'v=' as a prefix to all categorical feature values to make
sure that they are treated as strings.
CATEGORICAL_FEATURES_WITH_VOCABULARY = { feature_name: sorted( [ # Integer categorcal must be int and string must be str value if dataframe[feature_name].dtype == "int64" else str(value) for value in list(dataframe[feature_name].unique()) ] ) for feature_name in COLUMN_NAMES if feature_name not in list(NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME]) }
All features names.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list( CATEGORICAL_FEATURES_WITH_VOCABULARY.keys() ) `
Feature preprocessing with Keras layers
The following features are categorical features encoded as integers:
sex
cp
fbs
restecg
exang
ca
We will encode these features using one-hot encoding. We have two options here:
- Use
CategoryEncoding()
, which requires knowing the range of input values and will error on input outside the range. - Use
IntegerLookup()
which will build a lookup table for inputs and reserve an output index for unkown input values.
For this example, we want a simple solution that will handle out of range inputs at inference, so we will use IntegerLookup()
.
We also have a categorical feature encoded as a string: thal
. We will create an index of all possible features and encode output using the StringLookup()
layer.
Finally, the following feature are continuous numerical features:
age
trestbps
chol
thalach
oldpeak
slope
For each of these features, we will use a Normalization()
layer to make sure the mean of each feature is 0 and its standard deviation is 1.
Below, we define 2 utility functions to do the operations:
encode_numerical_feature
to apply featurewise normalization to numerical features.process
to one-hot encode string or integer categorical features.
`# Tensorflow required for tf.data.Dataset import tensorflow as tf
We process our datasets elements here (categorical) and convert them to indices to avoid this step
during model training since only tensorflow support strings.
def encode_categorical(features, target): for feature_name in features: if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY: lookup_class = ( layers.StringLookup if features[feature_name].dtype == "string" else layers.IntegerLookup ) vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name] # Create a lookup to convert a string values to an integer indices. # Since we are not using a mask token nor expecting any out of vocabulary # (oov) token, we set mask_token to None and num_oov_indices to 0. index = lookup_class( vocabulary=vocabulary, mask_token=None, num_oov_indices=0, output_mode="binary", ) # Convert the string input values into integer indices. value_index = index(features[feature_name]) features[feature_name] = value_index
else:
pass
# Change features from OrderedDict to Dict to match Inputs as they are Dict.
return dict(features), target
def encode_numerical_feature(feature, name, dataset): # Create a Normalization layer for our feature normalizer = layers.Normalization() # Prepare a Dataset that only yields our feature feature_ds = dataset.map(lambda x, y: x[name]) feature_ds = feature_ds.map(lambda x: tf.expand_dims(x, -1)) # Learn the statistics of the data normalizer.adapt(feature_ds) # Normalize the input feature encoded_feature = normalizer(feature) return encoded_feature `
Let's generate tf.data.Dataset objects for each dataframe:
`def dataframe_to_dataset(dataframe): dataframe = dataframe.copy() labels = dataframe.pop("target") ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels)).map( encode_categorical ) ds = ds.shuffle(buffer_size=len(dataframe)) return ds
train_ds = dataframe_to_dataset(train_dataframe) val_ds = dataframe_to_dataset(val_dataframe) `
Each Dataset
yields a tuple (input, target)
where input
is a dictionary of features and target
is the value 0
or 1
:
for x, y in train_ds.take(1): print("Input:", x) print("Target:", y)
Input: {'age': <tf.Tensor: shape=(), dtype=int64, numpy=45>, 'sex': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([0, 1])>, 'cp': <tf.Tensor: shape=(5,), dtype=int64, numpy=array([0, 0, 0, 0, 1])>, 'trestbps': <tf.Tensor: shape=(), dtype=int64, numpy=142>, 'chol': <tf.Tensor: shape=(), dtype=int64, numpy=309>, 'fbs': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 0])>, 'restecg': <tf.Tensor: shape=(3,), dtype=int64, numpy=array([0, 0, 1])>, 'thalach': <tf.Tensor: shape=(), dtype=int64, numpy=147>, 'exang': <tf.Tensor: shape=(2,), dtype=int64, numpy=array([0, 1])>, 'oldpeak': <tf.Tensor: shape=(), dtype=float64, numpy=0.0>, 'slope': <tf.Tensor: shape=(), dtype=int64, numpy=2>, 'ca': <tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 0, 0, 1])>, 'thal': <tf.Tensor: shape=(5,), dtype=int64, numpy=array([0, 0, 0, 0, 1])>} Target: tf.Tensor(1, shape=(), dtype=int64)
Let's batch the datasets:
train_ds = train_ds.batch(32) val_ds = val_ds.batch(32)
Build a model
With this done, we can create our end-to-end model:
`# Categorical features have different shapes after the encoding, dependent on the
vocabulary or unique values of each feature. We create them accordinly to match the
input data elements generated by tf.data.Dataset after pre-processing them
def create_model_inputs(): inputs = {}
# This a helper function for creating categorical features
def create_input_helper(feature_name):
num_categories = len(CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name])
inputs[feature_name] = layers.Input(
name=feature_name, shape=(num_categories,), dtype="int64"
)
return inputs
for feature_name in FEATURE_NAMES:
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
# Categorical features
create_input_helper(feature_name)
else:
# Make them float32, they are Real numbers
feature_input = layers.Input(name=feature_name, shape=(1,), dtype="float32")
# Process the Inputs here
inputs[feature_name] = encode_numerical_feature(
feature_input, feature_name, train_ds
)
return inputs
This Layer defines the logic of the Model to perform the classification
class Classifier(keras.layers.Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.dense_1 = layers.Dense(32, activation="relu")
self.dropout = layers.Dropout(0.5)
self.dense_2 = layers.Dense(1, activation="sigmoid")
def call(self, inputs):
all_features = layers.concatenate(list(inputs.values()))
x = self.dense_1(all_features)
x = self.dropout(x)
output = self.dense_2(x)
return output
# Surpress build warnings
def build(self, input_shape):
self.built = True
Create the Classifier model
def create_model(): all_inputs = create_model_inputs() output = Classifier()(all_inputs) model = keras.Model(all_inputs, output) return model
model = create_model() model.compile("adam", "binary_crossentropy", metrics=["accuracy"]) `
/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:106: UserWarning: When providing `inputs` as a dict, all keys in the dict must match the names of the corresponding tensors. Received key 'age' mapping to value <KerasTensor shape=(None, 1), dtype=float32, sparse=False, name=keras_tensor> which has name 'keras_tensor'. Change the tensor name to 'age' (via `Input(..., name='age')`) warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:106: UserWarning: When providing `inputs` as a dict, all keys in the dict must match the names of the corresponding tensors. Received key 'trestbps' mapping to value <KerasTensor shape=(None, 1), dtype=float32, sparse=False, name=keras_tensor_1> which has name 'keras_tensor_1'. Change the tensor name to 'trestbps' (via `Input(..., name='trestbps')`) warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:106: UserWarning: When providing `inputs` as a dict, all keys in the dict must match the names of the corresponding tensors. Received key 'thalach' mapping to value <KerasTensor shape=(None, 1), dtype=float32, sparse=False, name=keras_tensor_2> which has name 'keras_tensor_2'. Change the tensor name to 'thalach' (via `Input(..., name='thalach')`) warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:106: UserWarning: When providing `inputs` as a dict, all keys in the dict must match the names of the corresponding tensors. Received key 'oldpeak' mapping to value <KerasTensor shape=(None, 1), dtype=float32, sparse=False, name=keras_tensor_3> which has name 'keras_tensor_3'. Change the tensor name to 'oldpeak' (via `Input(..., name='oldpeak')`) warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:106: UserWarning: When providing `inputs` as a dict, all keys in the dict must match the names of the corresponding tensors. Received key 'slope' mapping to value <KerasTensor shape=(None, 1), dtype=float32, sparse=False, name=keras_tensor_4> which has name 'keras_tensor_4'. Change the tensor name to 'slope' (via `Input(..., name='slope')`) warnings.warn( /home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/models/functional.py:106: UserWarning: When providing `inputs` as a dict, all keys in the dict must match the names of the corresponding tensors. Received key 'chol' mapping to value <KerasTensor shape=(None, 1), dtype=float32, sparse=False, name=keras_tensor_5> which has name 'keras_tensor_5'. Change the tensor name to 'chol' (via `Input(..., name='chol')`) warnings.warn(
Let's visualize our connectivity graph:
# `rankdir='LR'` is to make the graph horizontal. keras.utils.plot_model(model, show_shapes=True, rankdir="LR")
Train the model
model.fit(train_ds, epochs=50, validation_data=val_ds)
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 102ms/step - accuracy: 0.4688 - loss: 8.0563
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - accuracy: 0.4732 - loss: 7.9796
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.4725 - loss: 7.9848 - val_accuracy: 0.2295 - val_loss: 12.0816
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 105ms/step - accuracy: 0.5000 - loss: 6.6368
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - accuracy: 0.4532 - loss: 7.8320
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 18ms/step - accuracy: 0.4547 - loss: 7.8310 - val_accuracy: 0.2459 - val_loss: 6.2543
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 91ms/step - accuracy: 0.5000 - loss: 7.6558
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.5041 - loss: 7.3378
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/step - accuracy: 0.5087 - loss: 7.2802 - val_accuracy: 0.6885 - val_loss: 2.1633
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 93ms/step - accuracy: 0.4375 - loss: 8.9030
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - accuracy: 0.4815 - loss: 8.0109
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 19ms/step - accuracy: 0.4858 - loss: 7.9351 - val_accuracy: 0.7705 - val_loss: 3.3916
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 88ms/step - accuracy: 0.4688 - loss: 8.1279
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.5049 - loss: 7.4815
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.5117 - loss: 7.4054 - val_accuracy: 0.7705 - val_loss: 3.6911
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 107ms/step - accuracy: 0.4688 - loss: 7.8832
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.4940 - loss: 7.4615
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.5121 - loss: 7.1851 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 101ms/step - accuracy: 0.5312 - loss: 6.9446
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 12ms/step - accuracy: 0.5357 - loss: 6.5511
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.5497 - loss: 6.3711 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 110ms/step - accuracy: 0.5938 - loss: 6.3905
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6192 - loss: 5.9601
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6101 - loss: 6.0728 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 108ms/step - accuracy: 0.5938 - loss: 6.5442
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6006 - loss: 6.3309
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step - accuracy: 0.5949 - loss: 6.3647 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 113ms/step - accuracy: 0.5625 - loss: 6.8250
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 10ms/step - accuracy: 0.5675 - loss: 6.5020
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.5764 - loss: 6.3308 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 116ms/step - accuracy: 0.6250 - loss: 4.3582
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.6053 - loss: 5.4824
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6076 - loss: 5.4500 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 118ms/step - accuracy: 0.5625 - loss: 7.0064
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.5740 - loss: 6.4431
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step - accuracy: 0.5787 - loss: 6.3510 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 115ms/step - accuracy: 0.7500 - loss: 3.7382
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 10ms/step - accuracy: 0.6812 - loss: 4.7893
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step - accuracy: 0.6712 - loss: 4.9453 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 114ms/step - accuracy: 0.6562 - loss: 5.5498
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.6580 - loss: 5.4636
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.6578 - loss: 5.4379 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 113ms/step - accuracy: 0.5938 - loss: 5.8118
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 8ms/step - accuracy: 0.5978 - loss: 5.9295
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step - accuracy: 0.6045 - loss: 5.8426 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 115ms/step - accuracy: 0.6562 - loss: 4.4893
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.5763 - loss: 5.9135
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.5814 - loss: 5.8590 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 127ms/step - accuracy: 0.5625 - loss: 7.0281
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6071 - loss: 6.0424
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - accuracy: 0.6179 - loss: 5.8262 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 130ms/step - accuracy: 0.6562 - loss: 5.3547
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6701 - loss: 5.0648
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - accuracy: 0.6713 - loss: 5.0607 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 121ms/step - accuracy: 0.7500 - loss: 4.0295
5/8 ━━━━━━━━━━━━[37m━━━━━━━━ 0s 13ms/step - accuracy: 0.7157 - loss: 4.3995
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - accuracy: 0.7077 - loss: 4.4886 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 129ms/step - accuracy: 0.6250 - loss: 6.0278
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6479 - loss: 5.4982
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - accuracy: 0.6461 - loss: 5.4898 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 134ms/step - accuracy: 0.5938 - loss: 5.8592
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6782 - loss: 4.7529
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/step - accuracy: 0.6627 - loss: 5.0219 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 127ms/step - accuracy: 0.6875 - loss: 5.0149
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6342 - loss: 5.5898
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - accuracy: 0.6290 - loss: 5.6701 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 121ms/step - accuracy: 0.5938 - loss: 6.0783
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6259 - loss: 5.6908
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - accuracy: 0.6352 - loss: 5.5719 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 112ms/step - accuracy: 0.7812 - loss: 3.1021
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 12ms/step - accuracy: 0.7353 - loss: 3.8725
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/step - accuracy: 0.7163 - loss: 4.1637 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 112ms/step - accuracy: 0.5625 - loss: 6.9224
5/8 ━━━━━━━━━━━━[37m━━━━━━━━ 0s 13ms/step - accuracy: 0.6331 - loss: 5.5663
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/step - accuracy: 0.6416 - loss: 5.4024 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 117ms/step - accuracy: 0.6875 - loss: 4.4043
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6668 - loss: 5.0742
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6743 - loss: 4.9986 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 104ms/step - accuracy: 0.6562 - loss: 5.3405
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 8ms/step - accuracy: 0.6868 - loss: 4.7990
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.6838 - loss: 4.8458 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 116ms/step - accuracy: 0.6562 - loss: 4.8092
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.7061 - loss: 4.3996
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.7053 - loss: 4.4297 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 114ms/step - accuracy: 0.6250 - loss: 5.6655
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 10ms/step - accuracy: 0.6536 - loss: 5.3912
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step - accuracy: 0.6589 - loss: 5.3014 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 116ms/step - accuracy: 0.7812 - loss: 3.5258
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.6900 - loss: 4.7711
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 20ms/step - accuracy: 0.6882 - loss: 4.8074 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 123ms/step - accuracy: 0.5938 - loss: 6.5425
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 10ms/step - accuracy: 0.6346 - loss: 5.6779
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6423 - loss: 5.5672 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 120ms/step - accuracy: 0.6250 - loss: 5.6215
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6451 - loss: 5.2140
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/step - accuracy: 0.6556 - loss: 5.0993 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 115ms/step - accuracy: 0.7188 - loss: 4.2096
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.7218 - loss: 4.3075
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/step - accuracy: 0.7143 - loss: 4.4143 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 114ms/step - accuracy: 0.5625 - loss: 7.0242
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6608 - loss: 5.3428
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - accuracy: 0.6675 - loss: 5.2031 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 105ms/step - accuracy: 0.6875 - loss: 5.0369
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6601 - loss: 5.2386
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - accuracy: 0.6675 - loss: 5.0972 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 114ms/step - accuracy: 0.6562 - loss: 4.8957
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.7086 - loss: 4.4144
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/step - accuracy: 0.6980 - loss: 4.5912 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 115ms/step - accuracy: 0.6250 - loss: 6.0333
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6438 - loss: 5.6852
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 23ms/step - accuracy: 0.6551 - loss: 5.4504 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 119ms/step - accuracy: 0.5938 - loss: 6.4043
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6659 - loss: 5.2220
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6751 - loss: 5.0637 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 122ms/step - accuracy: 0.5625 - loss: 7.0517
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 10ms/step - accuracy: 0.6782 - loss: 5.0396
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6854 - loss: 4.9129 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 121ms/step - accuracy: 0.6562 - loss: 5.4278
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.6575 - loss: 5.2183
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6676 - loss: 5.0430 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 120ms/step - accuracy: 0.7500 - loss: 3.9611
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 10ms/step - accuracy: 0.7322 - loss: 4.2233
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - accuracy: 0.7325 - loss: 4.2274 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 127ms/step - accuracy: 0.8438 - loss: 2.5075
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.7483 - loss: 3.8605
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 26ms/step - accuracy: 0.7305 - loss: 4.1423 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 132ms/step - accuracy: 0.7188 - loss: 4.5277
5/8 ━━━━━━━━━━━━[37m━━━━━━━━ 0s 15ms/step - accuracy: 0.6698 - loss: 5.2541
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 27ms/step - accuracy: 0.6831 - loss: 4.9995 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 1s 149ms/step - accuracy: 0.7188 - loss: 4.3368
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 12ms/step - accuracy: 0.6884 - loss: 4.8941
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 26ms/step - accuracy: 0.6877 - loss: 4.9237 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 113ms/step - accuracy: 0.7188 - loss: 3.6048
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.6953 - loss: 4.5189
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - accuracy: 0.6914 - loss: 4.6078 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 120ms/step - accuracy: 0.7188 - loss: 4.5277
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.7298 - loss: 4.2710
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - accuracy: 0.7214 - loss: 4.4175 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 117ms/step - accuracy: 0.7500 - loss: 4.0295
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.6962 - loss: 4.8892
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 26ms/step - accuracy: 0.6981 - loss: 4.8478 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 122ms/step - accuracy: 0.7812 - loss: 3.4540
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 9ms/step - accuracy: 0.7095 - loss: 4.5553
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 21ms/step - accuracy: 0.7080 - loss: 4.5585 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 117ms/step - accuracy: 0.6875 - loss: 4.5707
7/8 ━━━━━━━━━━━━━━━━━[37m━━━ 0s 10ms/step - accuracy: 0.6914 - loss: 4.7756
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6939 - loss: 4.7445 - val_accuracy: 0.7705 - val_loss: 3.6992
1/8 ━━[37m━━━━━━━━━━━━━━━━━━ 0s 124ms/step - accuracy: 0.7188 - loss: 4.0735
6/8 ━━━━━━━━━━━━━━━[37m━━━━━ 0s 11ms/step - accuracy: 0.7049 - loss: 4.3802
8/8 ━━━━━━━━━━━━━━━━━━━━ 0s 22ms/step - accuracy: 0.6987 - loss: 4.5132 - val_accuracy: 0.7705 - val_loss: 3.6992
<keras.src.callbacks.history.History at 0x747bef08e590>
We quickly get to 80% validation accuracy.
Inference on new data
To get a prediction for a new sample, you can simply call model.predict()
. There are just two things you need to do:
- wrap scalars into a list so as to have a batch dimension (models only process batches of data, not single samples)
- Call
convert_to_tensor
on each feature
`sample = { "age": 60, "sex": 1, "cp": 1, "trestbps": 145, "chol": 233, "fbs": 1, "restecg": 2, "thalach": 150, "exang": 0, "oldpeak": 2.3, "slope": 3, "ca": 0, "thal": "fixed", }
Given the category (in the sample above - key) and the category value (in the sample above - value),
we return its one-hot encoding
def get_cat_encoding(cat, cat_value): # Create a list of zeros with the same length as categories encoding = [0] * len(cat) # Find the index of category_value in categories and set the corresponding position to 1 if cat_value in cat: encoding[cat.index(cat_value)] = 1 return encoding
for name, value in sample.items(): if name in CATEGORICAL_FEATURES_WITH_VOCABULARY: sample.update( { name: get_cat_encoding( CATEGORICAL_FEATURES_WITH_VOCABULARY[name], sample[name] ) } )
Convert inputs to tensors
input_dict = {name: tf.convert_to_tensor([value]) for name, value in sample.items()} predictions = model.predict(input_dict)
print( f"This particular patient had a {100 * predictions[0][0]:.1f} " "percent probability of having a heart disease, " "as evaluated by our model." ) `
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 77ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 79ms/step
This particular patient had a 0.0 percent probability of having a heart disease, as evaluated by our model.
Conclusions
- The orignal model (the one that runs only on tensorflow) converges quickly to around 80% and remains there for extended periods and at times hits 85%
- The updated model (the backed-agnostic) model may fluctuate between 78% and 83% and at times hitting 86% validation accuracy and converges around 80% also.