Samuel Ruiz-Pérez | University of Copenhagen (original) (raw)

Papers by Samuel Ruiz-Pérez

Research paper thumbnail of Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape

Frontiers in Genetics, Nov 16, 2022

Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replicat... more Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.

Research paper thumbnail of Equine hoof wall: Structure, properties, and bioinspired designs

Acta Biomaterialia, Oct 1, 2022

The horse hoof wall exhibits exceptional impact resistance and fracture control due to its unique... more The horse hoof wall exhibits exceptional impact resistance and fracture control due to its unique hierarchical structure which contains tubular, lamellar, and gradient configurations. In this study, structural characterization of the hoof wall was performed revealing features previously unknown. Prominent among them are tubule bridges, which are imaged and quantified. The hydration-dependent viscoelasticity of the hoof wall is described by a simplified Maxwell-Weichert model with two characteristic relaxation times corresponding to nanoscale and mesoscale features. Creep and relaxation tests reveal that the specific hydration gradient in the hoof keratin likely leads to reduced internal stresses that arise from spatial stiffness variations. To better understand realistic impact modes for the hoof wall in-vivo, drop tower tests were executed on hoof wall samples. Fractography revealed that the hoof wall's reinforced tubular structure dominates at lower impact energies, while the intertubular lamellae are dominant at higher impact energies. Broken fibers were observed on the surface of the tubules after failure, suggesting that the physically intertwined nature of the tubule reinforcement and intertubular matrix improves the toughness of this natural fiber reinforced composite. The augmented understanding of the structure-mechanical property relationship in dynamic loading led to the design of additively manufactured bioinspired structures, which were evaluated in quasistatic and dynamic loadings. The inclusion of gradient structures and lamellae significantly reduced the damage sustained in drop tower tests, while tubules increased the energy absorption of samples tested in compact tension. The samples most similar to the hoof wall displayed remarkably consistent fracture control properties.

Research paper thumbnail of Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape

Frontiers in Genetics, Nov 16, 2022

Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replicat... more Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.

Research paper thumbnail of Equine hoof wall: Structure, properties, and bioinspired designs

Acta Biomaterialia, Oct 1, 2022

The horse hoof wall exhibits exceptional impact resistance and fracture control due to its unique... more The horse hoof wall exhibits exceptional impact resistance and fracture control due to its unique hierarchical structure which contains tubular, lamellar, and gradient configurations. In this study, structural characterization of the hoof wall was performed revealing features previously unknown. Prominent among them are tubule bridges, which are imaged and quantified. The hydration-dependent viscoelasticity of the hoof wall is described by a simplified Maxwell-Weichert model with two characteristic relaxation times corresponding to nanoscale and mesoscale features. Creep and relaxation tests reveal that the specific hydration gradient in the hoof keratin likely leads to reduced internal stresses that arise from spatial stiffness variations. To better understand realistic impact modes for the hoof wall in-vivo, drop tower tests were executed on hoof wall samples. Fractography revealed that the hoof wall's reinforced tubular structure dominates at lower impact energies, while the intertubular lamellae are dominant at higher impact energies. Broken fibers were observed on the surface of the tubules after failure, suggesting that the physically intertwined nature of the tubule reinforcement and intertubular matrix improves the toughness of this natural fiber reinforced composite. The augmented understanding of the structure-mechanical property relationship in dynamic loading led to the design of additively manufactured bioinspired structures, which were evaluated in quasistatic and dynamic loadings. The inclusion of gradient structures and lamellae significantly reduced the damage sustained in drop tower tests, while tubules increased the energy absorption of samples tested in compact tension. The samples most similar to the hoof wall displayed remarkably consistent fracture control properties.