Kevin Davis | Laney College (original) (raw)

Papers by Kevin Davis

Research paper thumbnail of The Role of Gap Junctions in Adrenal Gland Function

Research paper thumbnail of ACTH and adrenocortical gap junctions

Microscopy Research and Technique, 2003

Since the initial identification of gap junctions in the adrenal gland, it has been proposed that... more Since the initial identification of gap junctions in the adrenal gland, it has been proposed that a system involving direct cell-cell communication might be involved in adrenal cortical functions. Gap junction channels do, in fact, provide pathways for direct intercellular exchange of small molecules (<1,000 Da), many of which have the potential to influence a wide range of cellular activities. Gap junctions are composed of proteins called connexin which, in the adrenal cortex, have proven to be remarkably consistent in both type and zonal distribution with connexin 43 (Cx43) as the predominant component in mammalian adrenal glands thus far evaluated. Only the inner two zones of the cortex (zonae fasciculata and reticularis) exhibit significant amounts of Cx43 and functional coupling. Adrenocorticotropin (ACTH) has been shown to increase Cx43 protein in vivo and in vitro, and a strong correlation has been noted between the presence of gap junctions and certain adrenal cortical functions, especially steroidogenic capacity and cell proliferation. This review summarizes evidence of the Cx43 expression in adrenal cortical cells and the likely role of Cx43 in steroidogenesis and cell proliferation. It is concluded that control of gap junction expression in the adrenal gland is hormonally dependent and is functionally linked to adrenal gland zonation.

Research paper thumbnail of Molecular Analysis of the NF2 Tumor-Suppressor Gene in Schwannomatosis

The American Journal of Human Genetics, 1997

Patients with multiple schwannomas without vestibular schwannomas have been postulated to compose... more Patients with multiple schwannomas without vestibular schwannomas have been postulated to compose a distinct subclass of neurofibromatosis (NF), termed "schwannomatosis." To compare the molecular-genetic basis of schwannomatosis with NF2, we examined the NF2 locus in 20 unrelated schwannomatosis patients and their affected relatives. Tumors from these patients frequently harbored typical truncating mutations of the NF2 gene and loss of heterozygosity of the surrounding region of chromosome 22. Surprisingly, unlike patients with NF2, no heterozygous NF2-gene changes were seen in normal tissues. Examination of multiple tumors from the same patient revealed that some schwannomatosis patients are somatic mosaics for NF2-gene changes. By contrast, other individuals, particularly those with a positive family history, appear to have an inherited predisposition to formation of tumors that carry somatic alterations of the NF2 gene. Further work is needed to define the pathogenetics of this unusual disease mechanism.

Research paper thumbnail of A point mutation associated with a severe phenotype of neurofibromatosis 2

Annals of Neurology, 1996

Neurofibromatosis 2 (NF2) is an autosomal dominant disease characterized by bilateral vestibular ... more Neurofibromatosis 2 (NF2) is an autosomal dominant disease characterized by bilateral vestibular schwannomas and other nonmalignant tumors of the brain, spinal cord, and peripheral nerves. Although the average age of onset of NF2 is 20 years, some individuals may become symptomatic in childhood. We studied 5 unrelated NF2 patients who became symptomatic before age 13. All 5 had multiple tumors in addition to vestibular schwannoma, and none had a positive family history. Sequence analysis of the NF2 gene revealed identical nonsense mutation of exon 6 in 3 patients. Because this mutation destroys a restriction enzyme recognition site, genomic DNA from the 2 other children was directly tested for this change and identical alterations were detected. Although the work of our laboratory and others has not, in general, detected identical mutations in unrelated patients, this mutation seems to occur particularly frequently in the pediatric population and thus may be associated with an especially severe phenotype. Restriction analysis in children with NF2 may be a cost effective way of identifying their mutation. Further work is needed to characterize the effects of this change on the NF2 protein product and its relationship to this severe phenotype.

Research paper thumbnail of The Role of Gap Junctions in Adrenal Gland Function

Research paper thumbnail of ACTH and adrenocortical gap junctions

Microscopy Research and Technique, 2003

Since the initial identification of gap junctions in the adrenal gland, it has been proposed that... more Since the initial identification of gap junctions in the adrenal gland, it has been proposed that a system involving direct cell-cell communication might be involved in adrenal cortical functions. Gap junction channels do, in fact, provide pathways for direct intercellular exchange of small molecules (<1,000 Da), many of which have the potential to influence a wide range of cellular activities. Gap junctions are composed of proteins called connexin which, in the adrenal cortex, have proven to be remarkably consistent in both type and zonal distribution with connexin 43 (Cx43) as the predominant component in mammalian adrenal glands thus far evaluated. Only the inner two zones of the cortex (zonae fasciculata and reticularis) exhibit significant amounts of Cx43 and functional coupling. Adrenocorticotropin (ACTH) has been shown to increase Cx43 protein in vivo and in vitro, and a strong correlation has been noted between the presence of gap junctions and certain adrenal cortical functions, especially steroidogenic capacity and cell proliferation. This review summarizes evidence of the Cx43 expression in adrenal cortical cells and the likely role of Cx43 in steroidogenesis and cell proliferation. It is concluded that control of gap junction expression in the adrenal gland is hormonally dependent and is functionally linked to adrenal gland zonation.

Research paper thumbnail of Molecular Analysis of the NF2 Tumor-Suppressor Gene in Schwannomatosis

The American Journal of Human Genetics, 1997

Patients with multiple schwannomas without vestibular schwannomas have been postulated to compose... more Patients with multiple schwannomas without vestibular schwannomas have been postulated to compose a distinct subclass of neurofibromatosis (NF), termed "schwannomatosis." To compare the molecular-genetic basis of schwannomatosis with NF2, we examined the NF2 locus in 20 unrelated schwannomatosis patients and their affected relatives. Tumors from these patients frequently harbored typical truncating mutations of the NF2 gene and loss of heterozygosity of the surrounding region of chromosome 22. Surprisingly, unlike patients with NF2, no heterozygous NF2-gene changes were seen in normal tissues. Examination of multiple tumors from the same patient revealed that some schwannomatosis patients are somatic mosaics for NF2-gene changes. By contrast, other individuals, particularly those with a positive family history, appear to have an inherited predisposition to formation of tumors that carry somatic alterations of the NF2 gene. Further work is needed to define the pathogenetics of this unusual disease mechanism.

Research paper thumbnail of A point mutation associated with a severe phenotype of neurofibromatosis 2

Annals of Neurology, 1996

Neurofibromatosis 2 (NF2) is an autosomal dominant disease characterized by bilateral vestibular ... more Neurofibromatosis 2 (NF2) is an autosomal dominant disease characterized by bilateral vestibular schwannomas and other nonmalignant tumors of the brain, spinal cord, and peripheral nerves. Although the average age of onset of NF2 is 20 years, some individuals may become symptomatic in childhood. We studied 5 unrelated NF2 patients who became symptomatic before age 13. All 5 had multiple tumors in addition to vestibular schwannoma, and none had a positive family history. Sequence analysis of the NF2 gene revealed identical nonsense mutation of exon 6 in 3 patients. Because this mutation destroys a restriction enzyme recognition site, genomic DNA from the 2 other children was directly tested for this change and identical alterations were detected. Although the work of our laboratory and others has not, in general, detected identical mutations in unrelated patients, this mutation seems to occur particularly frequently in the pediatric population and thus may be associated with an especially severe phenotype. Restriction analysis in children with NF2 may be a cost effective way of identifying their mutation. Further work is needed to characterize the effects of this change on the NF2 protein product and its relationship to this severe phenotype.