Paul van der Werf - Profile on Academia.edu (original) (raw)
Papers by Paul van der Werf
We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrom... more We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer , using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiN x /NbTiN microstrip line resonators, which have a resonance frequency in the range of 614-685 GHz—two orders of magnitude higher in frequency than what is currently studied for use in circuit quantum electrodynamics and photodetectors. The frequency resolution of the filters decreases from 350 to 140 with increasing frequency, most likely limited by dissipation of the resonators.
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially i... more A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs.
Astronomy & Astrophysics, 2010
Over the past few years several studies have provided estimates of the SFR (star-formation rate) ... more Over the past few years several studies have provided estimates of the SFR (star-formation rate) or the total infrared luminosity from just one infrared band. However these relations are generally derived for entire galaxies, which are known to contain a large scale diffuse emission that is not necessarily related to the latest star-formation episode. We provide new relations to estimate the SFR from resolved star-forming regions at 100 mum and 160 mum. We select individual star-forming regions in the nearby (840 kpc) galaxy M33. We estimate the SFR combining the emission in Halpha and at 24 mum to calibrate the emission at 100 mum and 160 mum as SFR estimators, as mapped with PACS/Herschel. The data are obtained in the framework of the HERM33ES open time key project. There is less emission in the HII regions at 160 mum than at 100 mum. Over a dynamic range of almost 2 dex in Sigma(SFR) we find that the 100 mum emission is a nearly linear estimator of the SFR, whereas that at 160 mum is slightly superlinear. The behaviour of individual star-forming regions is surprisingly similar to that of entire galaxies. At high Sigma(SFR), star formation drives the dust temperature, whereas uncertainties and variations in radiation-transfer and dust-heated processes dominate at low Sigma(SFR). Detailed modelling of both galaxies and individual star forming regions will be needed to interpret similarities and differences between the two and assess the fraction of diffuse emission in galaxies.
The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA
Experimental Astronomy, 2009
The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next spa... more The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will also cool the focal plane instruments thus avoiding the use of consumables and giving the mission a long lifetime. SPICA’s large, cold aperture will provide a two order of magnitude sensitivity advantage over current far infrared facilities (>30 microns wavelength). We describe the scientific advances that will be made possible by this large increase in sensitivity and give details of the mission, spacecraft and focal plane conceptual design.
Astronomy & Astrophysics, 2010
Within the framework of the HERM33ES key project, we are studying the star forming interstellar m... more Within the framework of the HERM33ES key project, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 micron wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 and 500 micron using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 micron). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60K plus/minus 10K. The temperature of the cold component drops significantly from about 24K in the inner 2 kpc radius to 13K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta=1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.
FIRES: First Results of the MS 1054-03 Field
Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Tele... more Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Telescope we find 6 large disk-like galaxies at redshifts z = 1.4-3.0. The galaxies, selected in K_s (2.2 micron), are regular and surprisingly large in the near-infrared (rest-frame optical), with face-on effective radii r_e = 0.65"-0.9" or 5.0-7.5 h_70^-1 kpc in a Lambda-CDM cosmology, comparable to the Milky Way. The surface brightness profiles are consistent with an exponential law over 2-3 effective radii. The WFPC2 morphologies in Hubble Space Telescope imaging (rest-frame UV) are irregular and show complex aggregates of star-forming regions ~2" (~15 h_70^-1 kpc) across, symmetrically distributed around the K_s-band centers. The spectral energy distributions show clear breaks in the rest-frame optical. The breaks are strongest in the central regions of the galaxies, and can be identified as the age-sensitive Balmer/4000 Angstrom break. The most straightforward interpretation is that these galaxies are large disk galaxies; deep NIR data are indispensable for this classification. The candidate disks constitute 50% of galaxies with L_V > 6 x 10^10 h_70^-2 L_sun at z = 1.4-3.0. This discovery was not expected on the basis of previously studied samples. In particular, the Hubble Deep Field North is deficient in large galaxies with the morphologies and profiles we report here.
A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies
Astrophysical Journal, 2003
The Deepest Near-Infrared View of the Universe
We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the fie... more We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the field around the z=0.83 cluster MS1054–03 with ISAAC on the VLT. For the HDF-S this resulted in the deepest ground-based infrared observations to date and the deepest K s -band in any field. We constructed K s -selected multicolor catalogs in both fields, selecting high-redshift galaxies on their rest-frame optical light. We discovered a new, substantial population of optically faint galaxies with very red near-infrared colors (J s – K s > 2.3) which are underrepresented in standard U-dropout samples. Recently, these galaxies were spectroscopically confirmed at redshifts z>2 and we estimate that they may contribute as much as 50% to the total stellar mass density at z~3. Furthermore, the near-infrared data allow direct measurement of the evolution of the global rest-frame optical color, luminosity density, and stellar mass density from z=0 to z=3. We find that the average rest-frame optical color was monotonically bluer in the past and the universe had a ~10 times lower stellar mass density in bright galaxies at z~3. In general, our results demonstrate the necessity of deep near-infrared imaging for a more complete picture of the early universe.
Astrophysical Journal, 2006
We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>... more We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>3.4x10^10h_70^-2L_sun) and of massive (M_*>3x10^10h_70^-2M_sun) galaxies in the last ~11 Gyr. We use very deep near-infrared images of the Hubble Deep Field-South and the MS1054-03 field in the J_s, H and K_s bands from FIRES to retrieve the sizes in the optical rest-frame for galaxies with z>1. We combine our results with those from GEMS at 0.2<z<1 and SDSS at z~0.1 to achieve a comprehensive picture of the optical rest-frame size evolution from z=0 to z=3. Galaxies are differentiated according to their light concentration using the Sersic index n. For less concentrated objects, the galaxies at a given luminosity were typically ~3+-0.5 (+-2 sigma) times smaller at z~2.5 than those we see today. The stellar mass-size relation has evolved less: the mean size at a given stellar mass was \~2+-0.5 times smaller at z~2.5, evolving proportional to (1+z)^{-0.40+-0.06}. Simple scaling relations between dark matter halos and baryons in a hierarchical cosmogony predict a stronger (although consistent within the error bars) than observed evolution of the stellar mass-size relation. The observed luminosity-size evolution out to z~2.5 matches well recent infall model predictions for Milky-Way type objects. For low-n galaxies, the evolution of the stellar mass-size relation would follow naturally if the individual galaxies grow inside-out. For highly concentrated objects, the situation is as follows: at a given luminosity, these galaxies were ~2.7+-1.1 times smaller at z~2.5 (or put differently, were typically ~2.2+-0.7 mag brighter at a given size than they are today), and at a given stellar mass the size has evolved proportional to (1+z)^{-0.45+-0.10}.
The Size Evolution of Galaxies since z ∼3: Combining SDSS, GEMS, and FIRES
Astrophysical Journal, 2006
Astrophysical Journal, 2004
We recently identified a substantial population of galaxies at z>2 with red rest-frame optical co... more We recently identified a substantial population of galaxies at z>2 with red rest-frame optical colors. These distant red galaxies (DRGs) are efficiently selected by the simple observed color criterion J-K>2.3. In this paper we present NIR spectroscopy with Keck/NIRSPEC of six DRGs at 2.4<z<3.2. We detect continuum emission and emission lines of all observed galaxies. Equivalent widths of H alpha are 20-30 Ang, smaller than measured for LBGs and nearby LIRGs, and comparable to normal nearby galaxies. The modest equivalent widths imply that the galaxies either have a decreasing star formation rate, or that they are very dusty. Fitting both the photometry and the H alpha lines, we find continuum extinction A_V=1-2 mag, ages 1-2.5 Gyr, star formation rates 200-400 solar masses/yr, and stellar masses 1-5x10^11 solar masses for models with constant star formation rates. From [NII]/H alpha ratios we infer that the metallicities are high, 1-1.5 x Solar. For four galaxies we can determine line widths from the optical emission lines. The widths are high, ranging from 130-240 km/s, and by combining data for LBGs and DRGs we find significant correlations between linewidth and restframe U-V color, and between linewidth and stellar mass. The latter correlation has a similar slope and offset as the ``baryonic Tully-Fisher relation'' for nearby galaxies. The median dynamical mass is ~2x10^11 solar masses, supporting the high stellar masses inferred from the photometry. We find that the median M/L_V ~ 0.8, a factor of ~5 higher than measured for LBGs. We infer from our small sample that DRGs are dustier, more metal rich, more massive, and have higher ages than z=3 LBGs of the same rest-frame V-band luminosity. Their high M/L ratios imply that they contribute significantly to the stellar mass density at z~2.5. [ABRIDGED]
FIRES: First Results of the MS 1054-03 Field
Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Tele... more Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Telescope we find 6 large disk-like galaxies at redshifts z = 1.4-3.0. The galaxies, selected in K_s (2.2 micron), are regular and surprisingly large in the near-infrared (rest-frame optical), with face-on effective radii r_e = 0.65"-0.9" or 5.0-7.5 h_70^-1 kpc in a Lambda-CDM cosmology, comparable to the Milky Way. The surface brightness profiles are consistent with an exponential law over 2-3 effective radii. The WFPC2 morphologies in Hubble Space Telescope imaging (rest-frame UV) are irregular and show complex aggregates of star-forming regions ~2" (~15 h_70^-1 kpc) across, symmetrically distributed around the K_s-band centers. The spectral energy distributions show clear breaks in the rest-frame optical. The breaks are strongest in the central regions of the galaxies, and can be identified as the age-sensitive Balmer/4000 Angstrom break. The most straightforward interpretation is that these galaxies are large disk galaxies; deep NIR data are indispensable for this classification. The candidate disks constitute 50% of galaxies with L_V > 6 x 10^10 h_70^-2 L_sun at z = 1.4-3.0. This discovery was not expected on the basis of previously studied samples. In particular, the Hubble Deep Field North is deficient in large galaxies with the morphologies and profiles we report here.
Astrophysical Journal, 2006
(Abridged) We present the evolution of the volume averaged properties of the rest-frame optically... more (Abridged) We present the evolution of the volume averaged properties of the rest-frame optically luminous galaxy population to z~3, determined from four disjoint deep fields with optical to near-infrared wavelength coverage. We select galaxies above a rest-frame V-band luminosity of 3x10^10 Lsol and characterize their rest-frame UV through optical properties via the mean spectral energy distribution (SED). To measure evolution we apply the same selection criteria to a sample of galaxies from the Sloan Digital Sky Survey and COMBO-17. The mean rest-frame 2200Ang through V-band SED becomes steadily bluer with increasing redshift but at z<3 the mean SED falls within the range defined by ``normal'' galaxies in the nearby Universe. We measure stellar mass-to-light ratios (Mstar/L) by fitting models to the rest-frame UV-optical SEDs and derive the stellar mass density. The stellar mass density in luminous galaxies has increased by a factor of 3.5-7.9 from z=3 to z=0.1, including field-to-field variance uncertainties. After correcting to total, the measured mass densities at z<2 lie below the integral of the star formation rate (SFR) density as a function of redshift as derived from UV selected samples. This may indicate a systematic error in the mass densities or SFR(z) estimates. We find large discrepancies between recent model predictions for the evolution of the mass density and our results, even when our observational selection is applied to the models. Finally we determine that Distant Red Galaxies (selected to have J_s - K_s>2.3) in our LV selected samples contribute 30% and 64% of the stellar mass budget at z~2 and z~ 2.8 respectively. These galaxies are largely absent from UV surveys and this result highlights the need for mass selection of high redshift galaxies.
A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies
Astrophysical Journal, 2003
Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts
Astronomical Journal, 2003
The Deepest Near-Infrared View of the Universe
We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the fie... more We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the field around the z=0.83 cluster MS1054–03 with ISAAC on the VLT. For the HDF-S this resulted in the deepest ground-based infrared observations to date and the deepest K s -band in any field. We constructed K s -selected multicolor catalogs in both fields, selecting high-redshift galaxies on their rest-frame optical light. We discovered a new, substantial population of optically faint galaxies with very red near-infrared colors (J s – K s > 2.3) which are underrepresented in standard U-dropout samples. Recently, these galaxies were spectroscopically confirmed at redshifts z>2 and we estimate that they may contribute as much as 50% to the total stellar mass density at z~3. Furthermore, the near-infrared data allow direct measurement of the evolution of the global rest-frame optical color, luminosity density, and stellar mass density from z=0 to z=3. We find that the average rest-frame optical color was monotonically bluer in the past and the universe had a ~10 times lower stellar mass density in bright galaxies at z~3. In general, our results demonstrate the necessity of deep near-infrared imaging for a more complete picture of the early universe.
Astrophysical Journal, 2006
We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>... more We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>3.4x10^10h_70^-2L_sun) and of massive (M_*>3x10^10h_70^-2M_sun) galaxies in the last ~11 Gyr. We use very deep near-infrared images of the Hubble Deep Field-South and the MS1054-03 field in the J_s, H and K_s bands from FIRES to retrieve the sizes in the optical rest-frame for galaxies with z>1. We combine our results with those from GEMS at 0.2<z<1 and SDSS at z~0.1 to achieve a comprehensive picture of the optical rest-frame size evolution from z=0 to z=3. Galaxies are differentiated according to their light concentration using the Sersic index n. For less concentrated objects, the galaxies at a given luminosity were typically ~3+-0.5 (+-2 sigma) times smaller at z~2.5 than those we see today. The stellar mass-size relation has evolved less: the mean size at a given stellar mass was \~2+-0.5 times smaller at z~2.5, evolving proportional to (1+z)^{-0.40+-0.06}. Simple scaling relations between dark matter halos and baryons in a hierarchical cosmogony predict a stronger (although consistent within the error bars) than observed evolution of the stellar mass-size relation. The observed luminosity-size evolution out to z~2.5 matches well recent infall model predictions for Milky-Way type objects. For low-n galaxies, the evolution of the stellar mass-size relation would follow naturally if the individual galaxies grow inside-out. For highly concentrated objects, the situation is as follows: at a given luminosity, these galaxies were ~2.7+-1.1 times smaller at z~2.5 (or put differently, were typically ~2.2+-0.7 mag brighter at a given size than they are today), and at a given stellar mass the size has evolved proportional to (1+z)^{-0.45+-0.10}.
Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies
Astrophysical Journal, 2004
We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrom... more We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer , using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiN x /NbTiN microstrip line resonators, which have a resonance frequency in the range of 614-685 GHz—two orders of magnitude higher in frequency than what is currently studied for use in circuit quantum electrodynamics and photodetectors. The frequency resolution of the filters decreases from 350 to 140 with increasing frequency, most likely limited by dissipation of the resonators.
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially i... more A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs.
Astronomy & Astrophysics, 2010
Over the past few years several studies have provided estimates of the SFR (star-formation rate) ... more Over the past few years several studies have provided estimates of the SFR (star-formation rate) or the total infrared luminosity from just one infrared band. However these relations are generally derived for entire galaxies, which are known to contain a large scale diffuse emission that is not necessarily related to the latest star-formation episode. We provide new relations to estimate the SFR from resolved star-forming regions at 100 mum and 160 mum. We select individual star-forming regions in the nearby (840 kpc) galaxy M33. We estimate the SFR combining the emission in Halpha and at 24 mum to calibrate the emission at 100 mum and 160 mum as SFR estimators, as mapped with PACS/Herschel. The data are obtained in the framework of the HERM33ES open time key project. There is less emission in the HII regions at 160 mum than at 100 mum. Over a dynamic range of almost 2 dex in Sigma(SFR) we find that the 100 mum emission is a nearly linear estimator of the SFR, whereas that at 160 mum is slightly superlinear. The behaviour of individual star-forming regions is surprisingly similar to that of entire galaxies. At high Sigma(SFR), star formation drives the dust temperature, whereas uncertainties and variations in radiation-transfer and dust-heated processes dominate at low Sigma(SFR). Detailed modelling of both galaxies and individual star forming regions will be needed to interpret similarities and differences between the two and assess the fraction of diffuse emission in galaxies.
The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA
Experimental Astronomy, 2009
The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next spa... more The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will also cool the focal plane instruments thus avoiding the use of consumables and giving the mission a long lifetime. SPICA’s large, cold aperture will provide a two order of magnitude sensitivity advantage over current far infrared facilities (>30 microns wavelength). We describe the scientific advances that will be made possible by this large increase in sensitivity and give details of the mission, spacecraft and focal plane conceptual design.
Astronomy & Astrophysics, 2010
Within the framework of the HERM33ES key project, we are studying the star forming interstellar m... more Within the framework of the HERM33ES key project, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 micron wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 and 500 micron using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 micron). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60K plus/minus 10K. The temperature of the cold component drops significantly from about 24K in the inner 2 kpc radius to 13K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta=1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.
FIRES: First Results of the MS 1054-03 Field
Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Tele... more Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Telescope we find 6 large disk-like galaxies at redshifts z = 1.4-3.0. The galaxies, selected in K_s (2.2 micron), are regular and surprisingly large in the near-infrared (rest-frame optical), with face-on effective radii r_e = 0.65"-0.9" or 5.0-7.5 h_70^-1 kpc in a Lambda-CDM cosmology, comparable to the Milky Way. The surface brightness profiles are consistent with an exponential law over 2-3 effective radii. The WFPC2 morphologies in Hubble Space Telescope imaging (rest-frame UV) are irregular and show complex aggregates of star-forming regions ~2" (~15 h_70^-1 kpc) across, symmetrically distributed around the K_s-band centers. The spectral energy distributions show clear breaks in the rest-frame optical. The breaks are strongest in the central regions of the galaxies, and can be identified as the age-sensitive Balmer/4000 Angstrom break. The most straightforward interpretation is that these galaxies are large disk galaxies; deep NIR data are indispensable for this classification. The candidate disks constitute 50% of galaxies with L_V > 6 x 10^10 h_70^-2 L_sun at z = 1.4-3.0. This discovery was not expected on the basis of previously studied samples. In particular, the Hubble Deep Field North is deficient in large galaxies with the morphologies and profiles we report here.
A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies
Astrophysical Journal, 2003
The Deepest Near-Infrared View of the Universe
We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the fie... more We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the field around the z=0.83 cluster MS1054–03 with ISAAC on the VLT. For the HDF-S this resulted in the deepest ground-based infrared observations to date and the deepest K s -band in any field. We constructed K s -selected multicolor catalogs in both fields, selecting high-redshift galaxies on their rest-frame optical light. We discovered a new, substantial population of optically faint galaxies with very red near-infrared colors (J s – K s > 2.3) which are underrepresented in standard U-dropout samples. Recently, these galaxies were spectroscopically confirmed at redshifts z>2 and we estimate that they may contribute as much as 50% to the total stellar mass density at z~3. Furthermore, the near-infrared data allow direct measurement of the evolution of the global rest-frame optical color, luminosity density, and stellar mass density from z=0 to z=3. We find that the average rest-frame optical color was monotonically bluer in the past and the universe had a ~10 times lower stellar mass density in bright galaxies at z~3. In general, our results demonstrate the necessity of deep near-infrared imaging for a more complete picture of the early universe.
Astrophysical Journal, 2006
We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>... more We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>3.4x10^10h_70^-2L_sun) and of massive (M_*>3x10^10h_70^-2M_sun) galaxies in the last ~11 Gyr. We use very deep near-infrared images of the Hubble Deep Field-South and the MS1054-03 field in the J_s, H and K_s bands from FIRES to retrieve the sizes in the optical rest-frame for galaxies with z>1. We combine our results with those from GEMS at 0.2<z<1 and SDSS at z~0.1 to achieve a comprehensive picture of the optical rest-frame size evolution from z=0 to z=3. Galaxies are differentiated according to their light concentration using the Sersic index n. For less concentrated objects, the galaxies at a given luminosity were typically ~3+-0.5 (+-2 sigma) times smaller at z~2.5 than those we see today. The stellar mass-size relation has evolved less: the mean size at a given stellar mass was \~2+-0.5 times smaller at z~2.5, evolving proportional to (1+z)^{-0.40+-0.06}. Simple scaling relations between dark matter halos and baryons in a hierarchical cosmogony predict a stronger (although consistent within the error bars) than observed evolution of the stellar mass-size relation. The observed luminosity-size evolution out to z~2.5 matches well recent infall model predictions for Milky-Way type objects. For low-n galaxies, the evolution of the stellar mass-size relation would follow naturally if the individual galaxies grow inside-out. For highly concentrated objects, the situation is as follows: at a given luminosity, these galaxies were ~2.7+-1.1 times smaller at z~2.5 (or put differently, were typically ~2.2+-0.7 mag brighter at a given size than they are today), and at a given stellar mass the size has evolved proportional to (1+z)^{-0.45+-0.10}.
The Size Evolution of Galaxies since z ∼3: Combining SDSS, GEMS, and FIRES
Astrophysical Journal, 2006
Astrophysical Journal, 2004
We recently identified a substantial population of galaxies at z>2 with red rest-frame optical co... more We recently identified a substantial population of galaxies at z>2 with red rest-frame optical colors. These distant red galaxies (DRGs) are efficiently selected by the simple observed color criterion J-K>2.3. In this paper we present NIR spectroscopy with Keck/NIRSPEC of six DRGs at 2.4<z<3.2. We detect continuum emission and emission lines of all observed galaxies. Equivalent widths of H alpha are 20-30 Ang, smaller than measured for LBGs and nearby LIRGs, and comparable to normal nearby galaxies. The modest equivalent widths imply that the galaxies either have a decreasing star formation rate, or that they are very dusty. Fitting both the photometry and the H alpha lines, we find continuum extinction A_V=1-2 mag, ages 1-2.5 Gyr, star formation rates 200-400 solar masses/yr, and stellar masses 1-5x10^11 solar masses for models with constant star formation rates. From [NII]/H alpha ratios we infer that the metallicities are high, 1-1.5 x Solar. For four galaxies we can determine line widths from the optical emission lines. The widths are high, ranging from 130-240 km/s, and by combining data for LBGs and DRGs we find significant correlations between linewidth and restframe U-V color, and between linewidth and stellar mass. The latter correlation has a similar slope and offset as the ``baryonic Tully-Fisher relation'' for nearby galaxies. The median dynamical mass is ~2x10^11 solar masses, supporting the high stellar masses inferred from the photometry. We find that the median M/L_V ~ 0.8, a factor of ~5 higher than measured for LBGs. We infer from our small sample that DRGs are dustier, more metal rich, more massive, and have higher ages than z=3 LBGs of the same rest-frame V-band luminosity. Their high M/L ratios imply that they contribute significantly to the stellar mass density at z~2.5. [ABRIDGED]
FIRES: First Results of the MS 1054-03 Field
Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Tele... more Using deep near-infrared imaging of the Hubble Deep Field South with ISAAC on the Very Large Telescope we find 6 large disk-like galaxies at redshifts z = 1.4-3.0. The galaxies, selected in K_s (2.2 micron), are regular and surprisingly large in the near-infrared (rest-frame optical), with face-on effective radii r_e = 0.65"-0.9" or 5.0-7.5 h_70^-1 kpc in a Lambda-CDM cosmology, comparable to the Milky Way. The surface brightness profiles are consistent with an exponential law over 2-3 effective radii. The WFPC2 morphologies in Hubble Space Telescope imaging (rest-frame UV) are irregular and show complex aggregates of star-forming regions ~2" (~15 h_70^-1 kpc) across, symmetrically distributed around the K_s-band centers. The spectral energy distributions show clear breaks in the rest-frame optical. The breaks are strongest in the central regions of the galaxies, and can be identified as the age-sensitive Balmer/4000 Angstrom break. The most straightforward interpretation is that these galaxies are large disk galaxies; deep NIR data are indispensable for this classification. The candidate disks constitute 50% of galaxies with L_V > 6 x 10^10 h_70^-2 L_sun at z = 1.4-3.0. This discovery was not expected on the basis of previously studied samples. In particular, the Hubble Deep Field North is deficient in large galaxies with the morphologies and profiles we report here.
Astrophysical Journal, 2006
(Abridged) We present the evolution of the volume averaged properties of the rest-frame optically... more (Abridged) We present the evolution of the volume averaged properties of the rest-frame optically luminous galaxy population to z~3, determined from four disjoint deep fields with optical to near-infrared wavelength coverage. We select galaxies above a rest-frame V-band luminosity of 3x10^10 Lsol and characterize their rest-frame UV through optical properties via the mean spectral energy distribution (SED). To measure evolution we apply the same selection criteria to a sample of galaxies from the Sloan Digital Sky Survey and COMBO-17. The mean rest-frame 2200Ang through V-band SED becomes steadily bluer with increasing redshift but at z<3 the mean SED falls within the range defined by ``normal'' galaxies in the nearby Universe. We measure stellar mass-to-light ratios (Mstar/L) by fitting models to the rest-frame UV-optical SEDs and derive the stellar mass density. The stellar mass density in luminous galaxies has increased by a factor of 3.5-7.9 from z=3 to z=0.1, including field-to-field variance uncertainties. After correcting to total, the measured mass densities at z<2 lie below the integral of the star formation rate (SFR) density as a function of redshift as derived from UV selected samples. This may indicate a systematic error in the mass densities or SFR(z) estimates. We find large discrepancies between recent model predictions for the evolution of the mass density and our results, even when our observational selection is applied to the models. Finally we determine that Distant Red Galaxies (selected to have J_s - K_s>2.3) in our LV selected samples contribute 30% and 64% of the stellar mass budget at z~2 and z~ 2.8 respectively. These galaxies are largely absent from UV surveys and this result highlights the need for mass selection of high redshift galaxies.
A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies
Astrophysical Journal, 2003
Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts
Astronomical Journal, 2003
The Deepest Near-Infrared View of the Universe
We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the fie... more We present very deep near-infrared imaging in the J s , H and K s -bands of the HDF-S and the field around the z=0.83 cluster MS1054–03 with ISAAC on the VLT. For the HDF-S this resulted in the deepest ground-based infrared observations to date and the deepest K s -band in any field. We constructed K s -selected multicolor catalogs in both fields, selecting high-redshift galaxies on their rest-frame optical light. We discovered a new, substantial population of optically faint galaxies with very red near-infrared colors (J s – K s > 2.3) which are underrepresented in standard U-dropout samples. Recently, these galaxies were spectroscopically confirmed at redshifts z>2 and we estimate that they may contribute as much as 50% to the total stellar mass density at z~3. Furthermore, the near-infrared data allow direct measurement of the evolution of the global rest-frame optical color, luminosity density, and stellar mass density from z=0 to z=3. We find that the average rest-frame optical color was monotonically bluer in the past and the universe had a ~10 times lower stellar mass density in bright galaxies at z~3. In general, our results demonstrate the necessity of deep near-infrared imaging for a more complete picture of the early universe.
Astrophysical Journal, 2006
We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>... more We present the evolution of the luminosity-size and stellar mass-size relations of luminous (L_V>3.4x10^10h_70^-2L_sun) and of massive (M_*>3x10^10h_70^-2M_sun) galaxies in the last ~11 Gyr. We use very deep near-infrared images of the Hubble Deep Field-South and the MS1054-03 field in the J_s, H and K_s bands from FIRES to retrieve the sizes in the optical rest-frame for galaxies with z>1. We combine our results with those from GEMS at 0.2<z<1 and SDSS at z~0.1 to achieve a comprehensive picture of the optical rest-frame size evolution from z=0 to z=3. Galaxies are differentiated according to their light concentration using the Sersic index n. For less concentrated objects, the galaxies at a given luminosity were typically ~3+-0.5 (+-2 sigma) times smaller at z~2.5 than those we see today. The stellar mass-size relation has evolved less: the mean size at a given stellar mass was \~2+-0.5 times smaller at z~2.5, evolving proportional to (1+z)^{-0.40+-0.06}. Simple scaling relations between dark matter halos and baryons in a hierarchical cosmogony predict a stronger (although consistent within the error bars) than observed evolution of the stellar mass-size relation. The observed luminosity-size evolution out to z~2.5 matches well recent infall model predictions for Milky-Way type objects. For low-n galaxies, the evolution of the stellar mass-size relation would follow naturally if the individual galaxies grow inside-out. For highly concentrated objects, the situation is as follows: at a given luminosity, these galaxies were ~2.7+-1.1 times smaller at z~2.5 (or put differently, were typically ~2.2+-0.7 mag brighter at a given size than they are today), and at a given stellar mass the size has evolved proportional to (1+z)^{-0.45+-0.10}.
Stellar Populations and Kinematics of Red Galaxies at z > 2: Implications for the Formation of Massive Galaxies
Astrophysical Journal, 2004