Sarah Powers | Lewis University (original) (raw)
Papers by Sarah Powers
Molecular Immunology, Jun 1, 2011
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular a... more Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Nature Immunology, Apr 2, 2006
During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. H... more During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. However, little is known about how each cyclin D contributes to the development of specific hematopoietic lineages. Here, analysis of Ccnd1-/-, Ccnd2-/-, Ccnd3-/and Ccnd2-/-Ccnd3-/mice showed that cyclin D3 was uniquely required for the development of pre-B cells. Transcription of Ccnd3 was dependent on expression of the common c-chain. In contrast, expression of the pre-B cell receptor and activation of 'downstream' signaling pathways prevented proteasome-mediated degradation of cyclin D3. Cyclin D3 has a key function in B cell development by integrating cytokine and pre-B cell receptor-dependent signals to expand the pool of pre-B cells that have successfully rearranged immunoglobulin heavy chain. Pluripotent hematopoietic stem cells give rise to precursors committed to specific blood lineages, including common lymphoid progenitors and common myeloid progenitors. The differentiation of common lymphoid progenitors into pro-B cells, the first committed stage of B cell development, is determined by a network of regulatory transcription factors 1. However, subsequent development requires successful rearrangement of the gene encoding immunoglobulin heavy chain (Igh) and surface expression of a pre-B cell receptor (pre-BCR) containing Igh, the surrogate light chains l5 and V-preB and the immunoglobulin coreceptors Iga and Igb 2. Signals initiated by the pre-BCR coordinate with bone marrow-derived cytokines to allow selection for large pre-B cells expressing successfully rearranged Igh 3-7. Biochemical and genetic studies have defined many BCR signaling effectors as being necessary for pre-B cell-mediated differentiation and population expansion. These include Iga and Igb 8 , the proximal B cell linker BLNK (also called SLP-65) 9 , Bruton's tyrosine kinase 10 and the Src family kinases Lyn, Fyn and Blk 11. However, it remains unclear how these signaling molecules coordinate specific developmental tasks such as pre-B cell population expansion. Likewise, many of the bone marrow-derived cytokines required for normal B cell development have been identified. Interleukin 7 (IL-7) 12 , thymic stromal lymphopoietin 13 , stem cell factor 14 and Fms-like tyrosine kinase ligand 15 expand the pool of pro-B cells available for recombination. Some of these cytokines, such as IL-7 (ref. 16), also act in synergy with the pre-BCR to mediate the initial population expansion of cells bearing in-frame Igh rearrangements. As both the pre-BCR and cytokine receptors contribute to pre-B cell proliferation, both must influence progression through the cell cycle. In other systems, surface receptors have been shown to initiate
Journal of Experimental Medicine, Oct 29, 2012
Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other... more Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other cell lineages. Furthermore, within different hematopoietic progenitor populations the D-type cyclins play nonredundant roles. The basis of this lineage and developmental specificity is unknown. In pro-B cells we demonstrate four distinct nuclear D-type cyclin compartments, including one cyclin D3 fraction associated with CDK4 and another phosphoinositide 3-kinase-regulated fraction not required for proliferation. A third fraction of cyclin D3 was associated with the nuclear matrix and repression of >200 genes including the variable (V) gene segments Igkv1-117, Iglv1, and Igh-VJ558. Consistent with different subnuclear compartments and functions, distinct domains of cyclin D3 mediated proliferation and Igk V gene segment repression. None of the cyclin D3 nuclear compartments overlapped with cyclin D2, which was distributed, unbound to CDK4, throughout the nucleus. Furthermore, compartmentalization of the cyclins appeared to be lineage restricted because in fibroblasts, cyclin D2 and cyclin D3 occupied a single nuclear compartment and neither bound CDK4 efficiently. These data suggest that subnuclear compartmentalization enables cyclin D3 to drive cell cycle progression and repress V gene accessibility, thereby ensuring coordination of proliferation with immunoglobulin recombination.
Cell reports, Jan 28, 2018
Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a s... more Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a single receptor, requires stochastic activation of individual variable (V) genes for transcription and recombination. How this occurs remains unknown. Using single-cell RNA sequencing (scRNA-seq) and allelic variation, we show that individual pre-B cells monoallelically transcribe divergent arrays of Vκ genes, thereby opening stochastic repertoires for subsequent Vκ-Jκ recombination. Transcription occurs upon translocation of Vκ genes to RNA polymerase II arrayed on the nuclear matrix in transcription factories. Transcription is anchored by CTCF-bound sites or E2A-loaded Vκ promotors and continues over large genomic distances delimited only by topological associating domains (TADs). Prior to their monoallelic activation, Vκ loci are transcriptionally repressed by cyclin D3, which prevents capture of Vκ gene containing TADs by transcription factories. Cyclin D3 also represses protocadherin...
Cell reports, Jan 28, 2018
Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a s... more Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a single receptor, requires stochastic activation of individual variable (V) genes for transcription and recombination. How this occurs remains unknown. Using single-cell RNA sequencing (scRNA-seq) and allelic variation, we show that individual pre-B cells monoallelically transcribe divergent arrays of Vκ genes, thereby opening stochastic repertoires for subsequent Vκ-Jκ recombination. Transcription occurs upon translocation of Vκ genes to RNA polymerase II arrayed on the nuclear matrix in transcription factories. Transcription is anchored by CTCF-bound sites or E2A-loaded Vκ promotors and continues over large genomic distances delimited only by topological associating domains (TADs). Prior to their monoallelic activation, Vκ loci are transcriptionally repressed by cyclin D3, which prevents capture of Vκ gene containing TADs by transcription factories. Cyclin D3 also represses protocadherin...
Proceedings of the National Academy of Sciences, 2014
T cells are essential for immune defenses against pathogens, such that viability of naïve T cells... more T cells are essential for immune defenses against pathogens, such that viability of naïve T cells before antigen encounter is critical to preserve a polyclonal repertoire and prevent immunodeficiencies. The viability of naïve T cells before antigen recognition is ensured by IL-7, which drives expression of the prosurvival factor Bcl-2. Quiescent naïve T cells have low basal activity of the transcription factor NF-κB, which was assumed to have no functional consequences. In contrast to this postulate, our data show that basal nuclear NF-κB activity plays an important role in the transcription of IL-7 receptor α-subunit (CD127), enabling responsiveness of naïve T cells to the prosurvival effects of IL-7 and allowing T-cell persistence in vivo. Moreover, we show that this property of basal NF-κB activity is shared by mouse and human naïve T cells. Thus, NF-κB drives a distinct transcriptional program in T cells before antigen encounter by controlling susceptibility to IL-7. Our results reveal an evolutionarily conserved role of NF-κB in T cells before antigenic stimulation and identify a novel molecular pathway that controls T-cell homeostasis.
Nature Immunology, 2006
During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. H... more During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. However, little is known about how each cyclin D contributes to the development of specific hematopoietic lineages. Here, analysis of Ccnd1 -/-, Ccnd2 -/-, Ccnd3 -/and Ccnd2 -/-Ccnd3 -/mice showed that cyclin D3 was uniquely required for the development of pre-B cells. Transcription of Ccnd3 was dependent on expression of the common c-chain. In contrast, expression of the pre-B cell receptor and activation of 'downstream' signaling pathways prevented proteasome-mediated degradation of cyclin D3. Cyclin D3 has a key function in B cell development by integrating cytokine and pre-B cell receptor-dependent signals to expand the pool of pre-B cells that have successfully rearranged immunoglobulin heavy chain.
Nature Immunology, 2009
Signals through the pre-B cell antigen receptor (pre-BCR) and interleukin 7 receptor (IL-7R) coor... more Signals through the pre-B cell antigen receptor (pre-BCR) and interleukin 7 receptor (IL-7R) coordinate pre-B cell population expansion with subsequent recombination of the locus encoding immunoglobulin κ-chain (Igk). Although many 'downstream' effectors of each receptor are known, how they integrate to mediate development has remained unclear. Here we report that pre-BCR-mediated activation of the Ras-MEK-Erk signaling pathway silenced transcription of Ccnd3 (encoding cyclin D3) and coordinated exit from the cell cycle with induction of the transcription factor E2A and the initiation of Igk recombination. IL-7R-mediated activation of the transcription factor STAT5 opposed this pathway by promoting Ccnd3 expression and concomitantly inhibiting Igk transcription by binding to the Igk intronic enhancer and preventing E2A recruitment. Our data show how pre-BCR signaling poises pre-B cells to undergo differentiation after escape from IL-7R signaling.
Nature Immunology, 2011
During B lymphopoiesis, Igk recombination requires pre-B cell receptor (pre-BCR) expression and e... more During B lymphopoiesis, Igk recombination requires pre-B cell receptor (pre-BCR) expression and escape from interleukin 7 receptor (IL-7R) signaling. By activating the transcription factor STAT5, IL-7R signaling maintains proliferation and represses Igk germline transcription by unknown mechanisms. We demonstrate that STAT5 tetramer bound the Igk intronic enhancer (Eκi), leading to recruitment of the histone methyltransferase Ezh2. Ezh2 marked H3K27me3 throughout Jκ to Cκ. In the absence of Ezh2, IL-7 failed to repress Igk germline transcription.
Molecular Immunology, 2011
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular a... more Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Journal of Experimental Medicine, 2012
Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other... more Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other cell lineages. Furthermore, within different hematopoietic progenitor populations the D-type cyclins play nonredundant roles. The basis of this lineage and developmental specificity is unknown. In pro-B cells we demonstrate four distinct nuclear D-type cyclin compartments, including one cyclin D3 fraction associated with CDK4 and another phosphoinositide 3-kinase-regulated fraction not required for proliferation. A third fraction of cyclin D3 was associated with the nuclear matrix and repression of >200 genes including the variable (V) gene segments Igkv1-117, Iglv1, and Igh-VJ558. Consistent with different subnuclear compartments and functions, distinct domains of cyclin D3 mediated proliferation and Igk V gene segment repression. None of the cyclin D3 nuclear compartments overlapped with cyclin D2, which was distributed, unbound to CDK4, throughout the nucleus. Furthermore, compartmentalization of the cyclins appeared to be lineage restricted because in fibroblasts, cyclin D2 and cyclin D3 occupied a single nuclear compartment and neither bound CDK4 efficiently. These data suggest that subnuclear compartmentalization enables cyclin D3 to drive cell cycle progression and repress V gene accessibility, thereby ensuring coordination of proliferation with immunoglobulin recombination.
Molecular Immunology, Jun 1, 2011
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular a... more Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Nature Immunology, Apr 2, 2006
During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. H... more During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. However, little is known about how each cyclin D contributes to the development of specific hematopoietic lineages. Here, analysis of Ccnd1-/-, Ccnd2-/-, Ccnd3-/and Ccnd2-/-Ccnd3-/mice showed that cyclin D3 was uniquely required for the development of pre-B cells. Transcription of Ccnd3 was dependent on expression of the common c-chain. In contrast, expression of the pre-B cell receptor and activation of 'downstream' signaling pathways prevented proteasome-mediated degradation of cyclin D3. Cyclin D3 has a key function in B cell development by integrating cytokine and pre-B cell receptor-dependent signals to expand the pool of pre-B cells that have successfully rearranged immunoglobulin heavy chain. Pluripotent hematopoietic stem cells give rise to precursors committed to specific blood lineages, including common lymphoid progenitors and common myeloid progenitors. The differentiation of common lymphoid progenitors into pro-B cells, the first committed stage of B cell development, is determined by a network of regulatory transcription factors 1. However, subsequent development requires successful rearrangement of the gene encoding immunoglobulin heavy chain (Igh) and surface expression of a pre-B cell receptor (pre-BCR) containing Igh, the surrogate light chains l5 and V-preB and the immunoglobulin coreceptors Iga and Igb 2. Signals initiated by the pre-BCR coordinate with bone marrow-derived cytokines to allow selection for large pre-B cells expressing successfully rearranged Igh 3-7. Biochemical and genetic studies have defined many BCR signaling effectors as being necessary for pre-B cell-mediated differentiation and population expansion. These include Iga and Igb 8 , the proximal B cell linker BLNK (also called SLP-65) 9 , Bruton's tyrosine kinase 10 and the Src family kinases Lyn, Fyn and Blk 11. However, it remains unclear how these signaling molecules coordinate specific developmental tasks such as pre-B cell population expansion. Likewise, many of the bone marrow-derived cytokines required for normal B cell development have been identified. Interleukin 7 (IL-7) 12 , thymic stromal lymphopoietin 13 , stem cell factor 14 and Fms-like tyrosine kinase ligand 15 expand the pool of pro-B cells available for recombination. Some of these cytokines, such as IL-7 (ref. 16), also act in synergy with the pre-BCR to mediate the initial population expansion of cells bearing in-frame Igh rearrangements. As both the pre-BCR and cytokine receptors contribute to pre-B cell proliferation, both must influence progression through the cell cycle. In other systems, surface receptors have been shown to initiate
Journal of Experimental Medicine, Oct 29, 2012
Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other... more Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other cell lineages. Furthermore, within different hematopoietic progenitor populations the D-type cyclins play nonredundant roles. The basis of this lineage and developmental specificity is unknown. In pro-B cells we demonstrate four distinct nuclear D-type cyclin compartments, including one cyclin D3 fraction associated with CDK4 and another phosphoinositide 3-kinase-regulated fraction not required for proliferation. A third fraction of cyclin D3 was associated with the nuclear matrix and repression of >200 genes including the variable (V) gene segments Igkv1-117, Iglv1, and Igh-VJ558. Consistent with different subnuclear compartments and functions, distinct domains of cyclin D3 mediated proliferation and Igk V gene segment repression. None of the cyclin D3 nuclear compartments overlapped with cyclin D2, which was distributed, unbound to CDK4, throughout the nucleus. Furthermore, compartmentalization of the cyclins appeared to be lineage restricted because in fibroblasts, cyclin D2 and cyclin D3 occupied a single nuclear compartment and neither bound CDK4 efficiently. These data suggest that subnuclear compartmentalization enables cyclin D3 to drive cell cycle progression and repress V gene accessibility, thereby ensuring coordination of proliferation with immunoglobulin recombination.
Cell reports, Jan 28, 2018
Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a s... more Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a single receptor, requires stochastic activation of individual variable (V) genes for transcription and recombination. How this occurs remains unknown. Using single-cell RNA sequencing (scRNA-seq) and allelic variation, we show that individual pre-B cells monoallelically transcribe divergent arrays of Vκ genes, thereby opening stochastic repertoires for subsequent Vκ-Jκ recombination. Transcription occurs upon translocation of Vκ genes to RNA polymerase II arrayed on the nuclear matrix in transcription factories. Transcription is anchored by CTCF-bound sites or E2A-loaded Vκ promotors and continues over large genomic distances delimited only by topological associating domains (TADs). Prior to their monoallelic activation, Vκ loci are transcriptionally repressed by cyclin D3, which prevents capture of Vκ gene containing TADs by transcription factories. Cyclin D3 also represses protocadherin...
Cell reports, Jan 28, 2018
Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a s... more Expression of vast repertoires of antigen receptors by lymphocytes, with each cell expressing a single receptor, requires stochastic activation of individual variable (V) genes for transcription and recombination. How this occurs remains unknown. Using single-cell RNA sequencing (scRNA-seq) and allelic variation, we show that individual pre-B cells monoallelically transcribe divergent arrays of Vκ genes, thereby opening stochastic repertoires for subsequent Vκ-Jκ recombination. Transcription occurs upon translocation of Vκ genes to RNA polymerase II arrayed on the nuclear matrix in transcription factories. Transcription is anchored by CTCF-bound sites or E2A-loaded Vκ promotors and continues over large genomic distances delimited only by topological associating domains (TADs). Prior to their monoallelic activation, Vκ loci are transcriptionally repressed by cyclin D3, which prevents capture of Vκ gene containing TADs by transcription factories. Cyclin D3 also represses protocadherin...
Proceedings of the National Academy of Sciences, 2014
T cells are essential for immune defenses against pathogens, such that viability of naïve T cells... more T cells are essential for immune defenses against pathogens, such that viability of naïve T cells before antigen encounter is critical to preserve a polyclonal repertoire and prevent immunodeficiencies. The viability of naïve T cells before antigen recognition is ensured by IL-7, which drives expression of the prosurvival factor Bcl-2. Quiescent naïve T cells have low basal activity of the transcription factor NF-κB, which was assumed to have no functional consequences. In contrast to this postulate, our data show that basal nuclear NF-κB activity plays an important role in the transcription of IL-7 receptor α-subunit (CD127), enabling responsiveness of naïve T cells to the prosurvival effects of IL-7 and allowing T-cell persistence in vivo. Moreover, we show that this property of basal NF-κB activity is shared by mouse and human naïve T cells. Thus, NF-κB drives a distinct transcriptional program in T cells before antigen encounter by controlling susceptibility to IL-7. Our results reveal an evolutionarily conserved role of NF-κB in T cells before antigenic stimulation and identify a novel molecular pathway that controls T-cell homeostasis.
Nature Immunology, 2006
During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. H... more During hematopoiesis, stem cell proliferation is dependent on expression of the D-type cyclins. However, little is known about how each cyclin D contributes to the development of specific hematopoietic lineages. Here, analysis of Ccnd1 -/-, Ccnd2 -/-, Ccnd3 -/and Ccnd2 -/-Ccnd3 -/mice showed that cyclin D3 was uniquely required for the development of pre-B cells. Transcription of Ccnd3 was dependent on expression of the common c-chain. In contrast, expression of the pre-B cell receptor and activation of 'downstream' signaling pathways prevented proteasome-mediated degradation of cyclin D3. Cyclin D3 has a key function in B cell development by integrating cytokine and pre-B cell receptor-dependent signals to expand the pool of pre-B cells that have successfully rearranged immunoglobulin heavy chain.
Nature Immunology, 2009
Signals through the pre-B cell antigen receptor (pre-BCR) and interleukin 7 receptor (IL-7R) coor... more Signals through the pre-B cell antigen receptor (pre-BCR) and interleukin 7 receptor (IL-7R) coordinate pre-B cell population expansion with subsequent recombination of the locus encoding immunoglobulin κ-chain (Igk). Although many 'downstream' effectors of each receptor are known, how they integrate to mediate development has remained unclear. Here we report that pre-BCR-mediated activation of the Ras-MEK-Erk signaling pathway silenced transcription of Ccnd3 (encoding cyclin D3) and coordinated exit from the cell cycle with induction of the transcription factor E2A and the initiation of Igk recombination. IL-7R-mediated activation of the transcription factor STAT5 opposed this pathway by promoting Ccnd3 expression and concomitantly inhibiting Igk transcription by binding to the Igk intronic enhancer and preventing E2A recruitment. Our data show how pre-BCR signaling poises pre-B cells to undergo differentiation after escape from IL-7R signaling.
Nature Immunology, 2011
During B lymphopoiesis, Igk recombination requires pre-B cell receptor (pre-BCR) expression and e... more During B lymphopoiesis, Igk recombination requires pre-B cell receptor (pre-BCR) expression and escape from interleukin 7 receptor (IL-7R) signaling. By activating the transcription factor STAT5, IL-7R signaling maintains proliferation and represses Igk germline transcription by unknown mechanisms. We demonstrate that STAT5 tetramer bound the Igk intronic enhancer (Eκi), leading to recruitment of the histone methyltransferase Ezh2. Ezh2 marked H3K27me3 throughout Jκ to Cκ. In the absence of Ezh2, IL-7 failed to repress Igk germline transcription.
Molecular Immunology, 2011
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular a... more Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Journal of Experimental Medicine, 2012
Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other... more Ubiquitously expressed D-type cyclins are required for hematopoiesis but are dispensable in other cell lineages. Furthermore, within different hematopoietic progenitor populations the D-type cyclins play nonredundant roles. The basis of this lineage and developmental specificity is unknown. In pro-B cells we demonstrate four distinct nuclear D-type cyclin compartments, including one cyclin D3 fraction associated with CDK4 and another phosphoinositide 3-kinase-regulated fraction not required for proliferation. A third fraction of cyclin D3 was associated with the nuclear matrix and repression of >200 genes including the variable (V) gene segments Igkv1-117, Iglv1, and Igh-VJ558. Consistent with different subnuclear compartments and functions, distinct domains of cyclin D3 mediated proliferation and Igk V gene segment repression. None of the cyclin D3 nuclear compartments overlapped with cyclin D2, which was distributed, unbound to CDK4, throughout the nucleus. Furthermore, compartmentalization of the cyclins appeared to be lineage restricted because in fibroblasts, cyclin D2 and cyclin D3 occupied a single nuclear compartment and neither bound CDK4 efficiently. These data suggest that subnuclear compartmentalization enables cyclin D3 to drive cell cycle progression and repress V gene accessibility, thereby ensuring coordination of proliferation with immunoglobulin recombination.