Python API — LightGBM 4.6.0.99 documentation (original) (raw)

Data Structure API

Dataset(data[, label, reference, weight, ...]) Dataset in LightGBM.
Booster([params, train_set, model_file, ...]) Booster in LightGBM.
CVBooster([model_file]) CVBooster in LightGBM.
Sequence() Generic data access interface.

Training API

train(params, train_set[, num_boost_round, ...]) Perform the training with given parameters.
cv(params, train_set[, num_boost_round, ...]) Perform the cross-validation with given parameters.

Scikit-learn API

LGBMModel(*[, boosting_type, num_leaves, ...]) Implementation of the scikit-learn API for LightGBM.
LGBMClassifier(*[, boosting_type, ...]) LightGBM classifier.
LGBMRegressor(*[, boosting_type, ...]) LightGBM regressor.
LGBMRanker(*[, boosting_type, num_leaves, ...]) LightGBM ranker.

Dask API

Added in version 3.2.0.

DaskLGBMClassifier(*[, boosting_type, ...]) Distributed version of lightgbm.LGBMClassifier.
DaskLGBMRegressor(*[, boosting_type, ...]) Distributed version of lightgbm.LGBMRegressor.
DaskLGBMRanker(*[, boosting_type, ...]) Distributed version of lightgbm.LGBMRanker.

Callbacks

early_stopping(stopping_rounds[, ...]) Create a callback that activates early stopping.
log_evaluation([period, show_stdv]) Create a callback that logs the evaluation results.
record_evaluation(eval_result) Create a callback that records the evaluation history into eval_result.
reset_parameter(**kwargs) Create a callback that resets the parameter after the first iteration.

Plotting

plot_importance(booster[, ax, height, xlim, ...]) Plot model's feature importances.
plot_split_value_histogram(booster, feature) Plot split value histogram for the specified feature of the model.
plot_metric(booster[, metric, ...]) Plot one metric during training.
plot_tree(booster[, ax, tree_index, ...]) Plot specified tree.
create_tree_digraph(booster[, tree_index, ...]) Create a digraph representation of specified tree.

Utilities