Precision — lightning 2.5.1.post0 documentation (original) (raw)
class lightning.fabric.plugins.precision.Precision[source]¶
Bases: object
Base class for all plugins handling the precision-specific parts of the training.
The class attribute precision must be overwritten in child classes. The default value reflects fp32 training.
backward(tensor, model, *args, **kwargs)[source]¶
Performs the actual backpropagation.
Parameters:
- tensor¶ (Tensor) – The tensor that will be used for backpropagation
- model¶ (Optional[Module]) – The module that was involved in producing the tensor and whose parameters need the gradients
Return type:
Convert model inputs (forward) to the floating point precision type of this plugin.
This is a no-op in the base precision plugin, since we assume the data already has the desired type (default is torch.float32).
Return type:
convert_module(module)[source]¶
Convert the module parameters to the precision type this plugin handles.
This is optional and depends on the precision limitations during optimization.
Return type:
Convert outputs to the floating point precision type expected after model’s forward.
This is a no-op in the base precision plugin, since we assume the data already has the desired type (default is torch.float32).
Return type:
A contextmanager for managing model forward/training_step/evaluation_step/predict_step.
Return type:
load_state_dict(state_dict)[source]¶
Called when loading a checkpoint, implement to reload precision plugin state given precision plugin state_dict.
Parameters:
state_dict¶ (dict[str, Any]) – the precision plugin state returned by state_dict
.
Return type:
main_params(optimizer)[source]¶
The main params of the model.
Returns the plain model params here. Maybe different in other precision plugins.
Return type:
module_init_context()[source]¶
Instantiate module parameters or tensors in the precision type this plugin handles.
This is optional and depends on the precision limitations during optimization.
Return type:
optimizer_step(optimizer, **kwargs)[source]¶
Hook to run the optimizer step.
Return type:
post_backward(tensor, module)[source]¶
Runs after precision plugin executes backward.
Parameters:
- tensor¶ (Tensor) – The tensor that will be used for backpropagation
- module¶ (Optional[Module]) – The module that was involved in producing the tensor and whose parameters need the gradients
Return type:
pre_backward(tensor, module)[source]¶
Runs before precision plugin executes backward.
Parameters:
- tensor¶ (Tensor) – The tensor that will be used for backpropagation
- module¶ (Optional[Module]) – The module that was involved in producing the tensor and whose parameters need the gradients
Return type:
Called when saving a checkpoint, implement to generate precision plugin state_dict.
Return type:
Returns:
A dictionary containing precision plugin state.
This method is called to teardown the training process.
It is the right place to release memory and free other resources.
Return type:
tensor_init_context()[source]¶
Controls how tensors get created (device, dtype).
Return type: