Geodesic-based distance reveals nonlinear topological features in neural activity from mouse visual cortex (original ) (raw )
(2019) Allen brain observatory—neuropixels visual coding. https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels
Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, Chepushtanova S, Hanson E, Motta F, Ziegelmeier L (2017) Persistence images: a stable vector representation of persistent homology. J Mach Learn Res 18(1):218–252 Google Scholar
Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC (2011) Functional specialization of mouse higher visual cortical areas. Neuron 72(6):1025–1039. https://doi.org/10.1016/j.neuron.2011.11.013 Article CAS PubMed Google Scholar
Babichev A, Dabaghian YA (2018) Topological schemas of memory spaces. Front Comput Neurosci 12:27. https://doi.org/10.3389/fncom.2018.00027 Article PubMed PubMed Central Google Scholar
Babichev A, Ji D, Mémoli F, Dabaghian YA (2016) A topological model of the hippocampal cell assembly network. Front Comput Neurosci 10:50. https://doi.org/10.3389/fncom.2016.00050 Article PubMed PubMed Central Google Scholar
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x Article Google Scholar
Billeh YN, Cai B, Gratiy SL, Dai K, Iyer R, Gouwens NW, Abbasi-Asl R, Jia X, Siegle JH, Olsen SR et al (2020) Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex. Neuron. https://doi.org/10.1016/j.neuron.2020.01.040 Article PubMed Google Scholar
Bressloff PC, Cowan JD (2003) A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn. Philos Trans R Soc Lond B Biol Sci 358(1438):1643–1667. https://doi.org/10.1098/rstb.2002.1109 Article PubMed PubMed Central Google Scholar
Carlsson G (2009) Topology and data. Bull Am Math Soc 46(2):255–308. https://doi.org/10.1090/S0273-0979-09-01249-X Article Google Scholar
Chaudhuri R, Gercek B, Pandey B, Peyrache A, Fiete I (2019) The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat Neurosci 22(9):1512–1520. https://doi.org/10.1038/s41593-019-0460-x Article CAS PubMed Google Scholar
Choi H, Choi S (2007) Robust kernel isomap. Pattern Recogn 40(3):853–862. https://doi.org/10.1016/j.patcog.2006.04.025 Article Google Scholar
Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic press, New YorkBook Google Scholar
Curto C (2017) What can topology tell us about the neural code? Bull Am Math Soc 54(1):63–78. https://doi.org/10.1090/bull/1554 Article Google Scholar
Curto C, Itskov V (2008) Cell groups reveal structure of stimulus space. PLoS Comput Biol 4(10):e1000205. https://doi.org/10.1371/journal.pcbi.1000205 Article CAS PubMed PubMed Central Google Scholar
Dabaghian Y, Mémoli F, Frank L, Carlsson G (2012) A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Comput Biol 8(8):e1002581. https://doi.org/10.1371/journal.pcbi.1002581 Article CAS PubMed PubMed Central Google Scholar
de Vries SE, Lecoq JA, Buice MA, Groblewski PA, Ocker GK, Oliver M, Feng D, Cain N, Ledochowitsch P, Millman D et al (2020) A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat Neurosci 23(1):138–151. https://doi.org/10.1038/s41593-019-0550-9 Article CAS PubMed Google Scholar
Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Soc, New York Google Scholar
Gallego JA, Perich MG, Miller LE, Solla SA (2017) Neural manifolds for the control of movement. Neuron 94(5):978–984. https://doi.org/10.1016/j.neuron.2017.05.025 Article CAS PubMed PubMed Central Google Scholar
Gao P, Ganguli S (2015) On simplicity and complexity in the brave new world of large-scale neuroscience. Curr Opin Neurobiol 32:148–155Article CAS Google Scholar
Ghrist R (2008) Barcodes: the persistent topology of data. Bull Am Math Soc 45(1):61–75. https://doi.org/10.1090/S0273-0979-07-01191-3 Article Google Scholar
Giusti C, Pastalkova E, Curto C, Itskov V (2015) Clique topology reveals intrinsic geometric structure in neural correlations. Proc Natl Acad Sci 112(44):13455–13460. https://doi.org/10.1073/pnas.1506407112 Article CAS PubMed PubMed Central Google Scholar
Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge Google Scholar
Jones JP, Palmer LA (1987) An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258. https://doi.org/10.1152/jn.1987.58.6.1233 Article CAS PubMed Google Scholar
Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç et al (2017) Fully integrated silicon probes for high-density recording of neural activity. Nature 551(7679):232–236Article CAS Google Scholar
Ko H, Cossell L, Baragli C, Antolik J, Clopath C, Hofer SB, Mrsic-Flogel TD (2013) The emergence of functional microcircuits in visual cortex. Nature 496(7443):96–100Article CAS Google Scholar
Ko H, Mrsic-Flogel TD, Hofer SB (2014) Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. J Neurosci 34(29):9812–9816Article CAS Google Scholar
Kriegeskorte N, Mur M, Bandettini PA (2008) Representational similarity analysis-connecting the branches of systems neuroscience. Front Syst Neurosci 2:4. https://doi.org/10.3389/neuro.06.004.2008 Article PubMed PubMed Central Google Scholar
Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB (2017) A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95(6):1420–1432Article CAS Google Scholar
Mante V, Carandini M (2005) Mapping of stimulus energy in primary visual cortex. J Neurophysiol 94(1):788–798. https://doi.org/10.1152/jn.01094.2004 Article PubMed Google Scholar
Marshel JH, Garrett ME, Nauhaus I, Callaway EM (2011) Functional specialization of seven mouse visual cortical areas. Neuron 72(6):1040–1054. https://doi.org/10.1016/j.neuron.2011.12.004 Article CAS PubMed PubMed Central Google Scholar
Mastrogiuseppe F, Ostojic S (2018) Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. Neuron 99(3):609–623. https://doi.org/10.1016/j.neuron.2018.07.003 Article CAS PubMed Google Scholar
Munkres JR (2018) Elements of algebraic topology. CRC Press, LondonBook Google Scholar
Naitzat G, Zhitnikov A, Lim LH (2020) Topology of deep neural networks. J Mach Learn Res 21(184):1–40 Google Scholar
Pachitariu M, Steinmetz N, Kadir S, Carandini M et al (2016) Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. BioRxiv
Saxena S, Cunningham JP (2019) Towards the neural population doctrine. Curr Opin Neurobiol 55:103–111. https://doi.org/10.1016/j.conb.2019.02.002 Article CAS PubMed Google Scholar
Seabold S, Perktold J (2010) statsmodels: Econometric and statistical modeling with python. In: 9th Python in science conference
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD (2017) Architecture, function, and assembly of the mouse visual system. Annu Rev Neurosci 40:499–538. https://doi.org/10.1146/annurev-neuro-071714-033842 Article CAS PubMed Google Scholar
Shepard RN, Chipman S (1970) Second-order isomorphism of internal representations: Shapes of states. Cogn Psychol 1(1):1–17. https://doi.org/10.1016/0010-0285(70)90002-2 Article Google Scholar
Siegle JH, Jia X, Durand S, Gale S, Bennett C, Graddis N, Heller G, Ramirez TK, Choi H, Luviano JA et al (2021) Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592(7852):86–92. https://doi.org/10.1038/s41586-020-03171-x Article CAS PubMed Google Scholar
Singh G, Memoli F, Ishkhanov T, Sapiro G, Carlsson G, Ringach DL (2008) Topological analysis of population activity in visual cortex. J Vis 8(8):11–11. https://doi.org/10.1167/8.8.11 Article PubMed Google Scholar
Sizemore AE, Phillips-Cremins JE, Ghrist R, Bassett DS (2019) The importance of the whole: topological data analysis for the network neuroscientist. Netw Neurosci 3(3):656–673. https://doi.org/10.1162/netn_a_00073 Article PubMed PubMed Central Google Scholar
Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD (2019) High-dimensional geometry of population responses in visual cortex. Nature 571(7765):361–365. https://doi.org/10.1038/s41586-019-1346-5 Article CAS PubMed PubMed Central Google Scholar
Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323. https://doi.org/10.1126/science.290.5500.2319 Article CAS PubMed Google Scholar
Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat Soc Ser B (Stat Methodol) 61(3):611–622. https://doi.org/10.1111/1467-9868.00196 Article Google Scholar
Tralie C, Saul N, Bar-On R (2018) Ripser.py: a lean persistent homology library for python. J Open Sour Softw 3(29):925. https://doi.org/10.21105/joss.00925 Article Google Scholar
Van Hooser SD, Heimel JAF, Chung S, Nelson SB, Toth LJ (2005) Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. J Neurosci 25(1):19–28Article Google Scholar
Wasserman L (2018) Topological data analysis. Ann Rev Stat Appl 5:501–532. https://doi.org/10.1146/annurev-statistics-031017-100045 Article Google Scholar
Zomorodian A (2010) Fast construction of the vietoris-rips complex. Comput Graph 34(3):263–271. https://doi.org/10.1016/j.cag.2010.03.007 Article Google Scholar