Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies (original) (raw)
References
Ahmad M., Hirz M., Pichler H., Schwab H. 2014. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98, 5301–5317. DOI 10.1007/s00253-014-5732-5 ArticleCAS Google Scholar
Bąska P., Wiśniewski M., Krzyżowska M., Długosz E., Zygner W., Górski P., Wędrychowicz H. 2013a. Molecular cloning and characterisation of in vitro immune response against astacinlike metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental Parasitology, 133, 472–482. DOI: 10.1016/ j.exppara.2013.01.006 Article Google Scholar
Bąska P., Zawistowska-Deniziak A., Zdziarska A.M.; Wasyl K., Wiśniewski M., Cywińska A., Klockiewicz M., Januszkiewicz K., Wędrychowicz H. 2013b. Fasciola hepatica — the pilot study of in vitro assessing immune response against native and recombinant antigens of the fluke. Acta Parasitologica, 58, 453–462. DOI: 10.2478/s11686-013-0163-5 PubMed Google Scholar
Coelho R.A.L., Carvalho Jr L.B., Perez E.P., Araki K., Takeuchi T., Ito A., Aoki T., Yamasaki H. 2005. Prevalence of toxocariasis in northeastern Brazil based on serology using recombinant Toxocara canis antigen. American Journal of Tropical Medicine and Hygiene, 72, 103–107 Article Google Scholar
Długosz E., Wasyl K., Klockiewicz M., Wiśniewski M. 2015. Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes. Parasitology Research, 114, 3365–3371. DOI: 10.1007/s00436-015-4561-5 Article Google Scholar
Doedens A., Loukas A., Maizels R.M. 2001. A cDNA encoding Tc-MUC-5, a mucin from Toxocara canis larvae identified by expression screening. Acta Tropica, 79, 211–217. DOI: 10.1016/S0001-706X(01)00137-1 ArticleCAS Google Scholar
Fillaux J., Magnaval J.F. 2013. Laboratory diagnosis of human toxocariasis. Veterinary Parasitology, 193, 327–336. DOI: 10.1016/j.vetpar.2012.12.028 ArticleCAS Google Scholar
Fong M.Y., Lau Y.L. 2004. Recombinant expression of the larval ex cretory-secretory antigen TES-120 of Toxocara canis in the methylotrophic yeast Pichia pastoris. Parasitology Research, 92, 173–176. DOI: 10.1007/s00436-003-1020-5 Article Google Scholar
Gawor J., Borecka A., Marczyńska M., Dobosz S., Żarnowska-Prymek H. 2015. Risk of human toxocariosis in Poland due to Toxocara infection of dogs and cats. Acta Parasitologica, 60, 99–104. DOI: 10.1515/ap-2015-0012
Gems D., Maizels R.M. 1996. An abundantly expressed mucin-like protein from Toxocara canis infective larvae: The precursor of the larval surface coat glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 93, 1665–1670 ArticleCAS Google Scholar
Gillespie S.H., Bidwell D., Voller A., Robertson B.D., Maizels R.M. 1993. Diagnosis of human toxocariasis by antigen capture enzyme linked immunosorbent assay. Journal of Clinical Pathology, 46, 551–554. DOI: 10.1136/jcp.46.6.551 ArticleCAS Google Scholar
Hayashi E., Tuda J., Imada M., Akao N., Fujita K. 2005. The high prevalence of asymptomatic Toxocara infection among schoolchildren in Manado, Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health, 36, 1399–1406 PubMed Google Scholar
Jarosz W., Mizgajska-Wiktor H., Kirwan P., Konarski J., Rychlicki W., Wawrzyniak G. 2010. Developmental age, physical fitness and Toxocara seroprevalence amongst lower-secondary students living in rural areas contaminated with Toxocara eggs. Parasitology, 137, 53–63. DOI: 10.1017/S0031182009990874 ArticleCAS Google Scholar
Koizumi A., Yamano K., Tsuchiya T., Schweizer F., Kiuchi F., Hada N. 2012. Synthesis, antigenicity against human sera and structure-activity relationships of carbohydrate moieties from Toxocara larvae and their analogues. Molecules, 17, 9023–9042. DOI: 10.3390/molecules17089023 ArticleCAS Google Scholar
Loukas A., Hintz M., Linder D., Mullin N.P., Prkinson J., Tetteh K.K.A., Maizels R.M. 2000. A family of secreted mucins from the parasitic nematode Toxocara canis bears diverse mucin domains but shares similar flanking six-cysteine repeat motifs. The Journal of Biological Chemistry, 275, 39600–39607. DOI: 10.1074/jbc.M005632200 ArticleCAS Google Scholar
Maizels R.M. 2013. Toxocara canis: Molecular basis of immune recognition and evasion. Veterinary Parasitology, 193, 365–374. DOI: 10.1016/j.vetpar.2012.12.032 ArticleCAS Google Scholar
Meghji M., Maizels R.M. 1986. Biochemical properties of larval excretory-secretory glycoproteins of the parasitic nematode Toxocara canis. Molecular and Biochemical Parasitology, 18, 155–170 ArticleCAS Google Scholar
Mohamad S., Azmi N.C., Noordin R. 2009. Development and evaluation of a sensitive and specific assay for diagnosis of human toxocariasis by use of three recombinant antigens (TES-26, TES-30USM, and TES-120). Journal of Clinical Microbiology, 47, 1712–1717. DOI: 10.1128/JCM.00001-09 ArticleCAS Google Scholar
Oaks J.A., Kayes S.G. 1979. Artificial hatching and culture of Toxocara canis second stage larvae. Journal of Parasitology, 65, 969–970 ArticleCAS Google Scholar
Rogé S., Van Reet N., Odiwuor S., Tran T., Schildermans K., Vandamme S., Vandenberghe I., Vervecken W., Gillingwater K., Claes F., Devreese B., Guisez Y., Büscher P. 2013. Recombinant expression of trypanosome surface glycoproteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. Veterinary Parasitology, 197, 571–579. DOI: 10.1016/j.vetpar.2013.05.009 Article Google Scholar
Schabussova I., Amer H., van Die I., Kosma P., Maizels R.M. 2007. O-methylated glycans from Toxocara are specific targets for antibody binding in human and animal infections. International Journal for Prasitology, 37, 97–109. DOI: 10.1016/j.ij-para.2006.09.006
Smith H., Holland C., Taylor M., Magnaval J.F., Schantz P., Maizels R.M. 2009. How common is human toxocariasis? Towards standardizing our knowledge. Trends in Parasitology, 25, 182–188. DOI: 10.1016/j.pt.2009.01.006 Article Google Scholar
Tawill S., Le Goff L., Ali F., Blaxter M., Allen J.E. 2004. Both freeliving and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infection and Immunity, 72, 398–407. DOI: 10.1128/IAI. 72.1.398-407.2004 ArticleCAS Google Scholar
Won K.Y., Kruszon-Moran D., Schantz P.M., Jones J.L. 2008. National seroprevalence and risk factors for zoonotic Toxocara spp. infection. American Journal of Tropical Medicine and Hygiene, 79, 552–557 Article Google Scholar
Yamasaki H., Araki K., Lim P.K.C, Zasmy N., Mak J.W., Taib R., Aoki T. 2000. Development of a highly specific recombinant Toxocara canis second-stage larva excretory-secretory antigen for immunodiagnosis of human toxocariasis. Journal of Clinical Microbiology, 38, 1409–1413 CASPubMedPubMed Central Google Scholar
Zawistowska-Deniziak A., Wasyl K., Norbury L.J., Wesołowska A., Bień J., Grodzik M., Wiśniewski M., Bąska P., Wędrychowicz H. 2013. Characterization and differential expression of cathepsin L3 alleles from Fasciola hepatica. Molecular and Biochemical Parasitology, 190, 27–37. DOI: 10.1016/j.mol-biopara.2013.06.001 ArticleCAS Google Scholar