For an extensive study of this subject see: Hamprecht, B., and H. Kleinert: Univ. of Colorado preprint, May 1968; Hamprecht, B.: Fortschr. Phys. 16, 35 (1969). There are very few parameters in this approach reproducing the decay properties of almost the complete Rosenfeld table for baryon resonances. Google Scholar
Kleinert, H.: Phys. Rev. 163, 1807 (1967). Kleinert, H., Barut, A. O., D. Corrigan, and H. Kleinert: Phys. Rev. Letters 20, 167 (1968). Kleinert, H. Corrigan, D.: University of Colorado, Thesis (1968). In particular, the theory is able to reproduce the experimentally observed double pole formula for GPE =GPM /μ _P_=GnM /μn and \(G_E^n = \frac{t}{{4m^2 }}G_M^n \). ArticleADS Google Scholar
-: Phys. Rev. Letters18, 1027 (1967). One simply assumes the pseudoscalar to transform as an octet operator under SU (3) and uses experimental masses. The mass splitting cause SU (3) breaking in the form factors. Only the unphysical transitions at rest are SU (3) symmetric. ArticleADS Google Scholar
Hamprecht, B., and H. Kleinert: Phys. Rev. (in press). Google Scholar
For simplicity we shall assume isospin invariance of the theory. The electromagnetic breaking effects could be included in this theory in quite the same way as the effect of the medium strong interactions on the strangeness changing currents which we shall focus our attention on. The strangeness changing currents will clearly not be conserved. Google Scholar
See the other lectures or, for example; Renner, B.: Current algebras, and their applications. Oxford: Pergamon Press 1968. MATH Google Scholar
Rosenfeld, A. H., et al.: Rev. Mod. Phys. 40, 77 (1968). For some more questionable resonances see Donnachie, A, R. G. Kirsopp, and C. Lovelace Phys. Letters 26 B, 161 (1968). ArticleADS Google Scholar
Kleinert, H.: Phys. Rev. 168 1827 (1968), and Lectures in Theoretical Physics New York: Gordon and Breach 1968. ArticleADS Google Scholar
Gell-Mann, M., D. Horn, and J. Weyers: Heidelberg Conference on High Energy Physics and Elementary Particles 1967. Gell-Mann, Leutwyler, H.: University Bern Preprint 1967. Gell-Mann, Kleinert, H.: Montana State University Preprint 1967. Google Scholar
We use the notation and phase conventions of de Swart, J. J.: Rev. Mod. Phys. 35, 916 (1963). The Racah coefficients are tabulated in Krammer, M.: Acta Phys. Austr., Suppl. 1, 183 (1964). The subscripts β, γ of ν are degeneracy labels. ArticleADS Google Scholar
In (35) we have absorbed the degeneracy labels γ, γ′, in ν′ to simplify the notation. The summation clearly extends over those labels as well. Google Scholar
Fulco, J., and D. Y. Wong: Phys. Rev. Letters 15, 274 (1965). The extended bootstrap condition is Γ=Cssu Γ+Cst Γ′. For a, detailed discussion of this connection see Fairlie, D. B.: Phys. Rev. 155, 1694 (1968). ArticleADSMathSciNet Google Scholar
Reviews on nucleon form factors are contained in W. K. H. Panofsky, Rapporteur's Talk at the Heidelberg International Conference on Elementary Particles, September 1967; H. Joos, ibid. Talk at the Heidelberg International Conference on Elementary Particles, September 1967, Hand, L. H.: Proc. of Inter. Conf. on Particles and Fields. New York: Interscience 1967. Google Scholar
Recent measurement of nucleon form factors at CEA: Gotein, M., et al.: Phys. Rev. Letters 18, 106 (1967).—DESY: Albrech, W., et al.: Phys. Rev. Letters 18, 1014 (1967); and SLAC: R. Taylor.—Paper delivered at the International Symposium on Electron and Photon Interactions at high Energies, SLAC, September, 1967. Google Scholar
Brasse, F., et al.: DESY preprint 67/34, 1967;—Ash, W. W., et al.: Phys. Letters 24 B, 165 (1967);—Tsai, Y. S.: SLAC-PUB-364 (Nov. 1967). Google Scholar