The PhoQ/PhoP Regulatory Network of Salmonella enterica (original) (raw)
Kier LD, Weppelman RM, Ames BN. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol 1979; 138:155–161. PubMedCAS Google Scholar
Groisman EA, Saier MH Jr, Ochman H. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella genome. EMBO J 1992; 11:1309–1316. PubMedCAS Google Scholar
Groisman EA, Chiao E, Lipps CJ et al. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA 1989; 86:7077–7081. ArticlePubMedCAS Google Scholar
Fields PI, Groisman EA, Heffron F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 1989; 243:1059–1062. ArticlePubMedCAS Google Scholar
Miller SI, Kukral AM, Mekalanos JJ. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 1989; 86:5054–5058. ArticlePubMedCAS Google Scholar
Galan JE, Curtiss R 3rd. Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb Pathog 1989; 6:433–443. ArticlePubMedCAS Google Scholar
Groisman EA, Parra CA, Salcedo M et al. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA 1992; 89:11939–11943. ArticlePubMedCAS Google Scholar
Tu X, Latifi T, Bougdour A et al. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci USA 2006; 103:13503–13508. ArticlePubMedCAS Google Scholar
Bearson BL, Wilson L, Foster JW. A low pH-inducible, phoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 1998; 180:2409–2417. PubMedCAS Google Scholar
Soncini FC, García Véscovi E, Solomon F et al. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol 1996; 178:5092–5099. PubMedCAS Google Scholar
Blanc-Potard A-B, Groisman EA. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 1997; 16:5376–5385. ArticlePubMedCAS Google Scholar
Moss JE, Fisher PE, Vick B et al. The regulatory protein PhoP controls susceptibility to the host inflammatory response in Shigella flexneri. Cell Microbiol 2000; 2:443–452. ArticlePubMedCAS Google Scholar
Oyston PC, Dorrell N, Williams K et al. The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 2000; 68:3419–3425. ArticlePubMedCAS Google Scholar
Derzelle S, Turlin E, Duchaud E et al. The PhoP-PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects. J Bacteriol 2004; 186:1270–1279. ArticlePubMedCAS Google Scholar
Flego D, Marits R, Eriksson AR et al. A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp carotovora. Mol Plant Microbe Interact 2000; 13:447–455. ArticlePubMedCAS Google Scholar
Shin D, Groisman EA. Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo. J Biol Chem 2005; 280:4089–4094. ArticlePubMedCAS Google Scholar
Chamnongpol S, Groisman EA. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J Mol Biol 2000; 300:291–305. ArticlePubMedCAS Google Scholar
Castelli ME, Garcia Vescovi E, Soncini FC. The phosphatase activity is the target for Mg2+ regulation of the sensor protein PhoQ in Salmonella. J Biol Chem 2000; 275:22948–22954. ArticlePubMedCAS Google Scholar
García Véscovi E, Soncini FC, Groisman EA. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 1996; 84:165–174. ArticlePubMed Google Scholar
Chamnongpol S, Cromie M, Groisman EA. Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica. J Mol Biol 2003; 325:795–807. ArticlePubMedCAS Google Scholar
García Véscovi E, Ayala M, Di Cera E et al. Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J Mol Biol 1997; 272:1440–1443. Google Scholar
Cho US, Bader MW, Amaya MF et al. Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling. J Mol Biol 2006; 356:1193–1206. ArticlePubMedCAS Google Scholar
Shin D, Lee EJ, Huang H et al. A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science 2006; 314:1607–1609. ArticlePubMedCAS Google Scholar
Bader MW, Sanowar S, Daley ME et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005; 122:461–472. ArticlePubMedCAS Google Scholar
Prost LR, Daley ME, Le Sage V et al. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 2007; 26:165–174. ArticlePubMedCAS Google Scholar
Groisman EA, Mouslim C. Sensing by bacterial regulatory systems in host and nonhost environments. Nat Rev Microbiol 2006; 4:705–709. ArticlePubMedCAS Google Scholar
Gunn JS, Hohmann EL, Miller SI. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol 1996; 178:6369–6373. PubMedCAS Google Scholar
Miller SI, Mekalanos JJ. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages J Bacteriol 1990; 172:2485–2490. PubMedCAS Google Scholar
Zwir I, Shin D, Kato A et al. Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA 2005; 102:2862–2867 ArticlePubMedCAS Google Scholar
Guina T, Yi EC, Wang H et al. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 2000; 182:4077–4086. ArticlePubMedCAS Google Scholar
Heithoff DM, Conner CP, Hanna PC et al. Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci USA 1997; 94:934–939. ArticlePubMedCAS Google Scholar
Valdivia RH, Falkow S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science 1997; 277:2007–2011. ArticlePubMedCAS Google Scholar
Behlau I, Miller SI. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol 1993; 175:4475–4484. PubMedCAS Google Scholar
Belden WJ, Miller SI. Further characterization of the PhoP regulon: identification of new PhoP-activated virulence loci. Infect Immun 1994; 62:5095–5101. PubMedCAS Google Scholar
Groisman EA, Kayser J, Soncini FC. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 1997; 179:7040–7045. PubMedCAS Google Scholar
Guo L, Lim KB, Poduje CM et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 1998; 95:189–198. ArticlePubMedCAS Google Scholar
Hilbert F, García del Portillo F, Groisman EA. A periplasmic D-alanyl-D-alanine dipeptidase in the gram-negative bacterium Salmonella enterica. J Bacteriol 1999; 181:2158–2165. PubMedCAS Google Scholar
Gunn JS, Belden WJ, Miller SI. Identification of phoP-phoQ activated genes within a duplicated region of the Salmonella typhimurium chromosome. Microb Pathog 1998; 25:77–90. ArticlePubMedCAS Google Scholar
Groisman EA. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 2001; 183:1835–1842. ArticlePubMedCAS Google Scholar
Mouslim C, Hilbert F, Huang H et al. Conflicting needs for a Salmonella hypervirulence gene in host and nonhost environments. Mol Microbiol 2002; 54:1019–1027. Article Google Scholar
Shi Y, Cromic MJ, Hsu FF et al. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol Microbiol 2004; 53:229–241. ArticlePubMedCAS Google Scholar
Kox LF, Wosten MM, Groisman EA. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J 2000; 19:1861–1872. ArticlePubMedCAS Google Scholar
Mouslim C, Groisman EA. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol 2003; 47:335–344. ArticlePubMedCAS Google Scholar
Minagawa S, Ogasawara H, Kato A et al. Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol 2003; 185:3696–3702. ArticlePubMedCAS Google Scholar
Lejona S, Aguirre A, Cabeza ML et al. Molecular characterization of the Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica. J Bacteriol 2003; 185:6287–6294. ArticlePubMedCAS Google Scholar
Shi Y, Latifi T, Cromie MJ et al. Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J Biol Chem 2004; 279:38618–38625. ArticlePubMedCAS Google Scholar
Zwir I, Huang H, Groisman EA. Analysis of differentially-regulated genes within a regulatory network by GPS genome navigation. Bioinformatics 2005; 21:4073–4083. ArticlePubMedCAS Google Scholar
Monsieurs P, De Keersmaecker S, Navarre WW et al. Comparison of the PhoPQ regulation in Escherichia coli and Salmonella typhimurium. J Mol Evol 2005; 60:462–474. ArticlePubMedCAS Google Scholar
Winfield MD, Latifi T, Groisman EA. Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis. J Biol Chem 2005; 280:14765–14772. ArticlePubMedCAS Google Scholar
Soncini FC, García Véscovi E, Groisman EA. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol 1995; 177:4364–4371. PubMedCAS Google Scholar
Kato A, Tanabe H, Utsumi R. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+-responsive promoters. J Bacteriol 1999; 181:5516–5520. PubMedCAS Google Scholar
Yamamoto K, Ogasawara H, Fujita N et al. Novel mode of transcriptional regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. Mol Microbiol 2002; 45:423–438. ArticlePubMedCAS Google Scholar
Zhou D, Han Y, Qin L et al. Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. FEMS Microbiol Lett 2005; 250:85–95. ArticlePubMedCAS Google Scholar
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304. ArticlePubMedCAS Google Scholar
Navarre WW, Halsey TA, Walthers D et al. Coregulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 2005; 56: 492–508. ArticlePubMedCAS Google Scholar
Bijlsma JJ, Groisman EA. Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol 2003; 11:359–366. ArticlePubMedCAS Google Scholar
Kato A, Mitrophanov AY, Groisman EA. A connector of two-component regulatory systems promotes signal amplification and persistence of expression. Proc Natl Acad Sci USA 2007; 104:12063–12068. ArticlePubMedCAS Google Scholar
Bajaj V, Hwang C, Lee CA. hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol 1995; 18:715–727. ArticlePubMedCAS Google Scholar
Deiwick J, Nikolaus T, Erdogan S et al. Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 1999; 31:1759–1773. ArticlePubMedCAS Google Scholar
Ly KT, Casanova JE. Mechanisms of Salmonella entry into host cells. Cell Microbiol 2007; 9:2103–2111. ArticlePubMedCAS Google Scholar
Ellermeier CD, Ellermeir JR, Slauch JM. HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 2005; 57:691–705. ArticlePubMedCAS Google Scholar
Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 2007; 10:24–29. ArticlePubMedCAS Google Scholar
Ochman H, Soncini FC, Solomon F et al. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci USA 1996; 93:7800–7804. ArticlePubMedCAS Google Scholar
Bijlsma JJ, Groisman EA. The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol Microbiol 2005; 57:85–96. ArticlePubMedCAS Google Scholar
Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol 2000; 182:771–781. ArticlePubMedCAS Google Scholar
Feng X, Oropeza R, Kenney LJ. Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol Microbiol 2003; 48:1131–1143. ArticlePubMedCAS Google Scholar
Alon U. The feed-forward loop network motif. In: Alon U, ed. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton: Chapman and Hall/CRC Press, 2006:41–74. Google Scholar
Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 2003; 100:11980–11985. ArticlePubMedCAS Google Scholar
Navarre WW, Porwollik S, Wang Y et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 2006; 313:236–238. ArticlePubMedCAS Google Scholar
Mouslim C, Groisman EA. Control of the Salmonella ugd gene by three two-component regulatory systems. Mol Microbiol 2003; 47:335–344. ArticlePubMedCAS Google Scholar
Mouslim C, Latifi T, Groisman EA. Signal-dependent requirement for the co-activator protein ResA in transcription of the ResB-regulated ugd gene. J Biol Chem 2003; 278:50588–50595. ArticlePubMedCAS Google Scholar
Kato A, Groisman EA. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 2004; 18:2302–2313. ArticlePubMedCAS Google Scholar
Bougdour A, Wickner S, Gottesman S. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev 2006; 20:884–897. ArticlePubMedCAS Google Scholar
Gunn JS, Lim KB, Krueger J et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 1998; 27:1171–1182. ArticlePubMedCAS Google Scholar
Lee H, Hsu FF, Turk J et al. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 2004; 186:4124–4133. ArticlePubMedCAS Google Scholar
Tamayo R, Choudhury B, Septer A et al. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol 2005; 187:3391–3399. ArticlePubMedCAS Google Scholar
Delgado MA, Mouslim C, Groisman EA. The PmrA/PmrB and RcsC/YojN/ResB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 2006; 60:39–50. ArticlePubMedCAS Google Scholar
Wösten MM, Kox LF, Chamnongpol S et al. A signal transduction system that responds to extracellular iron. Cell 2000; 103:113–125. ArticlePubMed Google Scholar
Winfield MD, Groisman EA. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci USA 2004; 101:17162–17167. ArticlePubMedCAS Google Scholar
Tzivion G, Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 2002; 277:3061–3064. ArticlePubMedCAS Google Scholar
Kato A, Latify T, Groisman EA. Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its postranscriptional activator PmrD. Proc Natl Acad Sci USA 2003; 100:4706–4711. ArticlePubMedCAS Google Scholar
Becker G, Klauck E, Hengge-Aronis R. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci USA 1999; 96:6439–6444. ArticlePubMedCAS Google Scholar
Fang FC, Libby SJ, Buchmeier NA et al. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA 1992; 89:11978–11982. ArticlePubMedCAS Google Scholar
Reinhart RA. Magnesium metabolism: a review with special reference to the relationship between intracellular content and serum levels. Arch Intern Med 1988; 148:2415–2420. ArticlePubMedCAS Google Scholar
Madan Babu M, Teichmann SA, Aravind L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol 2006; 358:614–633. ArticlePubMedCAS Google Scholar
Winfield MD, Groisman EA. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 2003; 69:3687–3694. ArticlePubMedCAS Google Scholar
Perry RD, Fetherston JD. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 1997; 10:35–66. PubMedCAS Google Scholar
Trent MS, Ribeiro AA, Lin S et al. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem 2001; 276:43122–43131. ArticlePubMedCAS Google Scholar
Nishino K, Hsu FF, Turk J et al. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol Microbiol 2006; 61:645–654. ArticlePubMedCAS Google Scholar
Zhao Y, Jansen R, Gaastra W et al. Identification of genes affecting Salmonella enterica serovar enteritidis infection of chicken macrophages. Infect Immun 2002; 70:S319–S321. Article Google Scholar
Grabenstein JP, Fukuto HS, Palmer LE et al. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun 2006; 74:3727–3741. ArticlePubMedCAS Google Scholar