The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour (original) (raw)
- Altman, J.S.& Tyrer, N.M. (1977) The locust wing hinge stretch receptors. II. Variation, alternative pathways and “mistakes” in the central arborizations. J. Comp. Neurol. 172: 431–439.
Google Scholar - Arnett, D.W. (1972) Spatial and temporal integration properties of units in the first optic ganglion of dipterans. J. Neurophysiol. 35: 429–444.
Google Scholar - Beersma, D.G.M., Stavenga, D.G.& Kuiper, J.W. (1975) Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J. Comp. Physiol. 102: 305–320.
Google Scholar - Beersma, D.G.M., Stavenga, D.G.& Kuiper, J.W. (1977) Retinal lattice, visual field and binocularities in flies. J. Comp. Physiol. 119: 207–220.
Google Scholar - Bishop, C.A.& Bishop, L.G. (1981) Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. J. Neurobiol. 12: 281–296.
Google Scholar - Bishop, L.G. (1969) A search for color encoding in the responses of a class of fly interneurons. Z. vergl. Physiol. 64: 355–371.
Google Scholar - Bishop, L.G.& Keehn, D.G. (1966) Two types of neurones sensitive to motion in the optic lobe of the fly. Nature (Lond.) 212: 1374–1376.
Google Scholar - Bishop, L.G., Keehn, D.G.& McCann, G.D. (1968) Motion detection by interneurons of optic lobes and brain of the flies, Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31: 509–525.
Google Scholar - Blondeau, J. (1977) Electrically evoked motor activity in the fly (Calliphora erythrocephala). Dissertation, Eberhard-Karls-Universität Tübingen.
Google Scholar - Blondeau, J. (1981) Electrically evoked course control in the fly Calliphora erythrocephala. J. Exp. Biol. 92: 143–153.
Google Scholar - Blondeau, J.& Heisenberg, M. (1982) The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wild-type and the mutant optomotor blind H31. J. Comp. Physiol. 145: 321–329.
Google Scholar - Bloom, J.W.& Atwood, H.L. (1980) Effects of altered sensory experience on the responsiveness of the locust descending contralateral movement detector neuron. J. Comp. Physiol. 135: 191–199.
Google Scholar - Braitenberg, V. (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3: 271–298.
Google Scholar - Braitenberg, V. (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7: 235–242.
Google Scholar - Braitenberg, V. (1972) Periodic structures and structural gradients in the visual ganglia of the fly. In: Information Processing in the Visual Systems of Arthropods. Ed. R Wehner. Berlin, Heidelberg, New York, Springer-Verlag, p. 3–15.
Google Scholar - Braitenberg, V.& Hauser-Holshuch, H. (1972) Patterns of projection in the visual system of the fly. II. Quantitative aspects of second order neurones in relation to models of movement perception. Exp. Brain Res. 16: 184–209.
Google Scholar - Buchner, E. (1976) Elementary movement detectors in an insect visual system. Biol. Cybern. 24: 85–101.
Google Scholar - Buchner, E. (1983) Behavioural analysis of spatial vision in insects (This volume).
Google Scholar - Buchner, E., Götz, K.G.& Straub, C. (1978) Elementary detectors for vertical movement in the visual system of Drosophila. Biol. Cybern. 31: 235–242.
Google Scholar - Burrows, M. (1973) The morphology of an levator and a depresser motoneuron of the hindwing of a locust. J. Comp. Physiol. 83: 165–178.
Google Scholar - DeVoe, R.D. (1980) Movement sensitivities of cells in the fly’s medulla. J. Comp. Physiol. 138: 93–119.
Google Scholar - DeVoe, R.D.& Ockleford, E.M. (1976) Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. Biol. Cybern. 23: 13–24.
Google Scholar - Dvorak, D.R., Bishop, L.G.& Eckert, H.E. (1975) On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100: 5–23.
Google Scholar - Dvorak, D., Srinivasan, M.V.& French, A.S. (1980) The contrast sensitivity of fly movement-detecting neurons. Vision Res. 20: 397–407.
Google Scholar - Eckert, H. (1978) Response properties of dipteran giant visual interneurones involved in control of optomotor behaviour. Nature (Lond.) 271: 358–360.
Google Scholar - Eckert, H. (1979) Anatomie, Elektrophysiologie und funktionelle Bedeutung bewegungssensitiver Neurone in der Sehbahn von Insekten (Phaenicia). Habilitationsschrift, Universität Bochum.
Google Scholar - Eckert, H. (1980) Functional properties of the HI-neurone in the third optic ganglion of the blowfly, Phaenicia. J. Comp. Physiol. 135: 29–39.
Google Scholar - Eckert, H. (1981) The horizontal cells in the lobula plate of the blowfly, Phaenicia sericata. J. Comp. Physiol. 143: 511–526.
Google Scholar - Eckert, H.& Bishop, L.G. (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata ( Diptera, Calliphoridae). J. Comp. Physiol. 126: 57–86.
Google Scholar - Eckert, H.E.A.& Hamdorf, K. (1981) Action potentials in “non-spiking” visual interneurones. Z. Naturforsch. 36c: 470–474.
Google Scholar - Eckert, H.& Meiler, K. (1981) Synaptic structures of identified, motion- sensitive interneurones in the brain of the fly, Phaenicia. Verh. Dtsch. Zool. Ges. 1981: 179.
Google Scholar - Franceschini, N. (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor Optics. Ed. A.W. Snyder& R. Menzel. Berlin, Heidelberg, New York, Springer Verlag, p. 98–125.
Google Scholar - Franceschini, N. (1983) The retinal mosaic of the fly compound eye (This volume).
Google Scholar - Franceschini, N., Hardie, R, Ribi, W.& Kirschfeld, K. (1981) Sexual dimorphism in a photoreceptor. Nature (Lond.) 291: 241–244.
Google Scholar - Franceschini, N., Münster, A.& Heurkens, G. (1979) Äquatoriales und binokulares Sehen bei der Fliege Calliphora erythrocephala. Verh. Dtsch. Zool. Ges. 1979: 209.
Google Scholar - Geiger, G. (1981) Is there a motion independent position computation of an object in the visual system of the housefly? Biol. Cybern. 40: 71–75.
Google Scholar - Geiger, G& Nässei, D.R. (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature (Lond.) 293: 398–399.
Google Scholar - Geiger, G. & Nässel, D. (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol. Cybern. 44: 141–149.
Google Scholar - Goodman, C. (1974) Anatomy of locust ocellar interneurons: Constancy and variability. J. Comp. Physiol. 95: 185–201.
Google Scholar - Götz, K.G. (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4: 199–208.
Google Scholar - Götz, K.G. (1982) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. BIONA-report 2. Ed. W. Nachtigall. Stuttgart, New York, Gustav Fischer, p. 21–33.
Google Scholar - Götz, K.G.& Buchner, E. (1978) Evidence for one-way movement detection in the visual system of Drosophila. Biol. Cybern. 31: 243–248.
Google Scholar - Götz, K.G., Hengstenberg, B.& Biesinger, R. (1979) Optomotor control of wing beat and body posture in Drosophila. Biol. Cybern. 35: 101–112.
Google Scholar - Hardie, R.C. (1979) Electrophysiological analysis of the fly retina. I. Comparative properties of Rl-6 and R7 and 8. J. Comp. Physiol. 129: 19–33.
Google Scholar - Hardie, R.C., Franceschini, N.& Mein tyre, P.D. (1979) Electrophysiological analysis of the fly retina. II. Spectral and polarization sensitivity in R7 and R8. J. Comp. Physiol. 133: 23–29.
Google Scholar - Hardie, R.C., Franceschini, N., Ribi, W.& Kirschfeld, K. (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. 145: 139–152.
Google Scholar - Hausen, K. ( 1976 a) Struktur, Funktion und Konektivität bewegungsempfindlicher Interneuroney im dritten optischen Neuropil der Schmeissfliege Calliphora erythrocephala. Dissertation, Eberhard-Karls-Universität Tübingen.
Google Scholar - Hausen, K. (1976 b) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch. 31 c: 629–633.
Google Scholar - Hausen, K. (1976 c) Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula plate von Dipteren. Verh. Dtsch. Zool. Ges. 1976: 254.
Google Scholar - Hausen, K. (1977) Signal processing in the insect eye. In: Function and Formation of Neural Systems. Ed. G.S. Stent. Berlin, Dahlem Konferenzen, p. 81–110.
Google Scholar - Hausen, K. (1979) Neural circuitry of visual orientation behavior in flies: structure and function of the lobula complex. Invest. Ophthalmol. Visual Sei. ( Suppl. ) 18: 109.
Google Scholar - Hausen, K. (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 1981: 49–70.
Google Scholar - Hausen, K. ( 1982 a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45: 143–156.
Google Scholar - Hausen, K. ( 1982 b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol. Cybern. 46: 67–79.
Google Scholar - Hausen, K. ( 1983 a) Motion sensitive interneurons in the optomotor system of the fly. I II. The centrifugal horizontal cells. ( In prep. )
Google Scholar - Hausen, K. (1983 b) Motion sensitive interneurons in the optomotor system of the fly. IV. The Hl, H2 and H3 cells. (In prep.)
Google Scholar - Hausen, K. ( 1983 c) Motion sensitive interneurons in the optomotor system of the fly. V. Monocular and binocular interactions. ( In prep. )
Google Scholar - Hausen, K. &: Wehrhahn, C. (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc. R. Soc. Lond. (In press)
Google Scholar - Hausen, K.& Wolburg-Buchholz, K. (1980) An improved cobalt-sulfide silver-intensification method for electron microscopy. Brain Res. 187: 462–466.
Google Scholar - Hausen, K., Wolburg-Buchholz, K.& Ribi, W.A. (1980) The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208: 371–387.
Google Scholar - Heide, G. (1975) Properties of a motor output system involved in the optomotor responses in flies. Biol. Cybern. 20: 99–112.
Google Scholar - Heide, G. (1982) Neural mechanism of flight control in diptera. BIONA-report. (In press)
Google Scholar - Heisenberg, M.& Buchner, E. (1977) The role of retinula cell types in visual behaviour of Drosophila melanogaster. J. Comp. Physiol. 117: 127–162.
Google Scholar - Heisenberg, M., Wonneberger, R.& Wolf, R. (1978) Optomotor-blind — a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124: 287–296.
Google Scholar - Hengstenberg, R. (1977) Spike responses of ‘non-spiking’ visual interneurone. Nature (Lond.) 270: 338–340.
Google Scholar - Hengstenberg, R. (1981) Rotatory visual responses of vertical cells in the lobula plate of Calliphora. Verh. Dtsch. Zool. Ges. 1981: 180.
Google Scholar - Hengstenberg, R. ( 1982 a) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. 149: 179–193.
Google Scholar - Hengstenberg, R. (1982 b) Characteristic visual response properties of particular giant vertical cells in the lobula plate of Calliphora. (In prep.)
Google Scholar - Hengstenberg, R.& Hengstenberg, B. (1980) Intracellular staining of insect neurons with Procion Yellow. In: Neuroanatomical Techniques. Insect Nervous System. Ed. N.J. Strausfeld& T.A. Miller. New York, Heidelberg, Berlin, Springer-Verlag, p. 307–324.
Google Scholar - Hengstenberg, R., Hausen, K.& Hengstenberg, B. (1982) The number and structure of giant vertical cells (vs) in the lobula plate of the blowfly Calliphora erythrocephala. J. Comp. Physiol, 149: 163–177.
Google Scholar - Hubel, D.H.& Wiesel, T.N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160: 106–154.
Google Scholar - Kirschfeld, K. (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3: 248–270.
Google Scholar - Kirschfeld, K. (1972) The visual system of Musca: Studies on optics, structure and function. In: Information Processing in the Visual Systems of Arthropods. Ed. R. Wehner. Berlin, Heidelberg, New York, Springer Verlag, p. 61–74.
Google Scholar - Koto, M., Tanouye, M.A., Ferrus, A., Thomas, J.B.& Wyman, R.J. (1981) The morphology of the cervical giant fiber neuron of Drosophila. Brain Res. 221: 213-–217.
Google Scholar - Laughlin, S. (1981) Neural principles in the peripheral visual system of invertebrates. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed. H. Autrum. Heidelberg, Berlin, New York, Springer Verlag, p. 135–280.
Google Scholar - Laughlin, S. (1983) The roles of parallel channels in early visual processing by the arthropod compound eye. (This volume)
Google Scholar - Levine, J.& Tracey, D. (1973) Structure and function of the giant motoneuron of Drosophila melanogaster. J. Comp. Physiol. 87: 213–235.
Google Scholar - Lilly white, P.G.& Dvorak, D.R. (1981) Responses to single photons in a fly optomotor neurone. Vision Res. 21: 279–290.
Google Scholar - Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1980) Movement detection: performance of a wide-field element in the visual system of the blowfly. Vision Res. 20: 467–474.
Google Scholar - Mastebroek, H.A.K., Zaagman, W.H.& Lenting, B.P.M. (1982) Memorylike effects in fly vision: Spatio-temporal interaction in a wide-field neuron. Biol. Cybern. 43: 147–155.
Google Scholar - McCann, G.D. (1973) The fundamental mechanism of motion detection in the insect visual system. Kybernetik 12: 64–73.
Google Scholar - McCann, G.D. & Arnett, D.W. (1972) Spectral and polarization sensitivity of the dipteran visual systems. J. Gen. Physiol. 59: 534–558.
Google Scholar - Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1982) Memorylike effects in fly vision: Spatio-temporal interaction in a wide-field neuron. Biol. Cybern. 43: 147–155.
Google Scholar - McCann, G.D.& Dill, J.C. (1969) Fundamental properties of intensity, form, and motion perception in the visual nervous system of Calliphora phaenicia and Musca domestica. J. Gen. Physiol. 53: 385–413.
Google Scholar - McCann, G.D.& Foster, S.F. (1971) Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8: 193–203.
Google Scholar - Mimura, K. (1971) Movement discrimination by the visual system of flies. Z. vergl. Physiol. 73: 105–138.
Google Scholar - Mimura, K. (1972) Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J. Comp. Physiol. 80: 409–437.
Google Scholar - Murphey, R.K., Matsumoto, S.G.& Levine, R.D. (1977) Does experience play a role in the development of insect neuronal circuitry? In: Identified Neurons and Behavior of Arthropods. Ed. G. Hoyle. New York, London, Plenum Press, p. 495–506.
Google Scholar - O’Shea, M.& Rowell, C.H.F. (1977) Complex neural integration and identified interneurons in the locust brain. In: Identified Neurons and Behavior. Ed. G. Hoyle. New York, London, Plenum Press, p. 307–328.
Google Scholar - O’Shea, M., Rowell, C.H.F.& Williams, J.L.D. (1974) The anatomy of a locust visual interneurone: the descending contralateral movement detector. J. Exp. Biol. 60: 1–12.
Google Scholar - Pick, B. (1976) Visual pattern discrimination as an element of the fly’s orientation behaviour. Biol. Cybern. 23: 171–180.
Google Scholar - Pierantoni, R. (1976) A look into the cock-pit of the fly. The architecture of the lobular plate. Cell Tissue Res. 171: 101–122.
Google Scholar - Poggio, T.& Reichardt, W. (1973) Considerations on models of movement detection. Kybernetik 13: 223–227.
Google Scholar - Poggio, T.& Reichardt, W. (1976) Visual control of orientation behaviour in the fly. Part II: Toward the underlying neural interactions. Quart. Rev. Biophys. 9: 377–438.
Google Scholar - Poggio, T., Reichardt, W.& Hausen, K. (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwiss. 68: 443–446.
Google Scholar - Power, M. (1948) The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. J. Comp. Neurol. 88: 347–409.
Google Scholar - Reichardt, W. (1973) Musterinduzierte Flugorientierung. Verhaltens-Versuche an der Fliege Musca domestica. Naturwiss. 60: 122–138.
Google Scholar - Reichardt, W.& Poggio, T. (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quart. Rev. Biophys. 9: 311–375.
Google Scholar - Reichardt, W.& Poggio, T. (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol. Cybern. 35: 81–100.
Google Scholar - Reichardt, W., Poggio, T.& Hausen, K. (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol. Cybern. 46 (suppl.): 1–30.
Google Scholar - Riehle, A. & Franceschini, N. (1982) Response of a movement-sensitive neuron to microstimulation of two photoreceptor cells. (In prep.)
Google Scholar - Soohoo, S.L.& Bishop, L.G. (1980) Intensity and motion responses of giant vertical neurons of the fly eye. J. Neurobiol. 11: 159–177.
Google Scholar - Spüler, M. (1980) Erregende und hemmende Wirkungen visueller Bewegungsreize auf das Flugsteuersystem von Fliegen-Elektro-physiologische und verhaltensphysiologische Untersuchungen an Musca und Calliphora. Dissertation, Universität Düsseldorf.
Google Scholar - Srinivasan, M.V.& Dvorak, D.R. (1980) Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol. 140: 1–23.
Google Scholar - Stavenga, D.G. (1975) The neural superposition eye and its optical demands. J. Comp. Physiol. 102: 297–304.
Google Scholar - Strausfeld, N.J. ( 1976 a) Atlas of an Insect Brain. Berlin, Heidelberg, New York, Springer Verlag.
Google Scholar - Strausfeld, N.J. ( 1976 b) Mosaic organizations, layers, and visual pathways in the insect brain. In: Neural Principles in Vision. Ed. F. Zettler& R. Weiler. Berlin, Heidelberg, New York, Springer Verlag, p. 245–279.
Google Scholar - Strausfeld, N.J. (1980) Male and female visual neurones in dipteran insects. Nature (Lond.) 283: 381–383.
Google Scholar - Strausfeld, N.J. (1983) Functional neuroanatomy of the blowfly’s visual system. (This volume)
Google Scholar - Strausfeld, N.J.& Nässel, D. (1981) Neuroarchitectures serving compound eyes of crustacea and insects. In: Handbook of Sensory Physiology. Ed. H. Autrum. Vol. VII/6B. Berlin, Heidelberg, New York, Springer Verlag, p. 1–138.
Google Scholar - Strausfeld, N.J.& Obermayer, M.L. (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and nervous system. J. Comp. Physiol. 110: 1–12.
Google Scholar - Tanouye, M.& Wyman, R.J. (1980) Motor outputs of giant nerve fibre in Drosophila. J. Neurophysiol. 44: 405–421.
Google Scholar - Wehrhahn, C. (1978) Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybern. 29: 237–247.
Google Scholar - Wehrhahn, C. (1979) Sex-specific differences in the chasing behaviour of houseflies (Musca). Biol. Cybern. 32: 239–241.
Google Scholar - Wehrhahn, C.& Hausen, K. (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol. Cybern. 38: 179–186.
Google Scholar - Wehrhahn, C.& Reichardt, W. (1975) Visually induced height orientation of the fly Musca domestica. Biol. Cybern. 20: 37–50.
Google Scholar - Wiesel, T.N.& Hubel, D.H. (1963) Effects of visual deprivation of morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26: 978–993.
Google Scholar - Zaagman, W.H., Mastebroek, H.A.K., Buyse, T.& Kuiper, J.W. (1977) Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J. Comp. Physiol. 116: 39–50.
Google Scholar - Zaagman, W.H., Mastebroek, H.A.K.& Kuiper, J.W. (1978) On the correlation model: Performance of a movement detecting neural element in the fly visual system. Biol. Cybern. 31: 163–168.
Google Scholar