Retinoid Reaction Products in Age Related Retinal Degeneration (original) (raw)
References
P. McWilliam, S. A. Jordan, P. Kenna, M. M. Humphries, R. Kumar-Singh, E. Sharp, and P. Humphries, Progress in the localisation of a late onset ADRP gene, in: “Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., CRC Press, Boca Raton, FL (1991). Google Scholar
S. S. Bhattacharya, R. Bashir, J. Keen, D. Lester, B. Lauffart, M. Jay, A. C. Bird, and C. F. Inglehearn, Linkage studies and rhodopsin mutation detection in autosomal dominant retinitis pigmentosa: An update, in: “Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., CRC Press, Boca Raton, FL (1991). Google Scholar
P. A. Hargrave and P. J. O’Brien, Speculations on the molecular basis of retinal degeneration in retinitis pigmentosa, in: “Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., CRC Press, Boca Raton, FL (1991). Google Scholar
E. M. Stone, B. E. Nichols, L. M. Streb, A. E. Kimura, and V. C. Sheffield, Genetic linkage of vitelliform macular degeneration (Best’s disease) to chromosome 11q13, Nature Genetics 1: 246 (1992). ArticlePubMedCAS Google Scholar
D. B. Farber, M. Danciger, and C. Bowes, Studies on the gene defect of the rd mouse, in: “Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., CRC Press, Boca Raton, FL (1991). Google Scholar
S. J. Pittler and W. Baehr, Identification of the precise molecular defect responsible for blindness in the mouse retinal degeneration mutant, rd, in: “Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., CRC Press, Boca Raton, FL (1991). Google Scholar
G. Connell, L. L. Molday, D. Reid, and R. S. Molday, Molecular structure and properties of peripherin/rds the normal product of the gene responsible for retinal degeneration in the rds mouse, in: “Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., CRC Press, Boca Raton, FL (1991). Google Scholar
F. L. Ferris, S. L. Fine, and L. Hyman, Age-related macular degeneration and blindness due to neovascular maculopathy, Arch. Ophtlnalmol. 102: 1640 (1984). Article Google Scholar
S. H. Sarks, D. Van Driel, L. Maxwell, and M. Killingsworth, Softening of drusen and subretinal neovascularization, Trans. Ophthalmol. Soc. U.K. 100: 414 (1980). PubMedCAS Google Scholar
L. Feeney, Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies, Invest. Opluhalmol. Vis. Sci. 17: 583 (1978). CAS Google Scholar
M. J. Hogan, Role of the retinal pigment epithelium in macular disease, Trans. Am. Acad. Ophthalmol. Otolaryngol. 76: 64 (1972). PubMedCAS Google Scholar
G. L. Wing, G. C. Blanchard, and J. J. Weiter, The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium, Invest. Ophthabnol. Vis. Sci. 17: 601 (1978). CAS Google Scholar
L. Feeney-Burns and G. E. Eldred, The fate of the phagosome: Conversion to ‘age pigment’ and impact in human retinal pigment epithelium, Trans. Ophthalmol. Soc. U.K. 103: 416 (1983). PubMed Google Scholar
M. L. Katz, C. M. Drea, G. E. Eldred, H. H. Hess, and W. G. Robison, Jr., Influence of early photoreceptor degeneration on lipofuscin in the retinal pigment epithelium, Exp. Eye Res. 43: 561 (1986). ArticlePubMedCAS Google Scholar
M. L. Katz and G. E. Eldred, Retinal light damage reduces autofluorescent pigment deposition in the retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci. 30: 37 (1989). PubMedCAS Google Scholar
L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, Aging human RPE: Morphometric analysis of macular, equatorial, and peripheral cells, Invest. Ophthalmol. Vis. Sci. 25: 195 (1984). PubMedCAS Google Scholar
R. P. Burns and L. Feeney-Burns, Clinico-morphologic correlations of drusen of Bruch’s membrane, Trans. Am. Op/nthalmol. Soc. 78: 206 (1980). CAS Google Scholar
T. Ishibashi, R. Patterson, Y. Ohnishi, H. Inomata, and S. J. Ryan, Formation of drusen in the human eye, Am. J. Opinthalmol. 101: 342 (1986). CAS Google Scholar
C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, and J. J. Weiter, Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration, Invest. Ophthalmol. Vis. Sci. 30: 1691 (1989). PubMedCAS Google Scholar
C. K. Dorey, G. Staurenghi, E C. Delori, J. R. Sarks, and S. H. Sarks, Lipofuscin distribution in aging and AMD eyes, Invest. Ophthalmol. Vis. Sci. 33(Suppl.): 1229 (1992). Google Scholar
K. S. Chio, U. Reiss, B. Fletcher, and A. L. Tappel, Peroxidation of subcellular organelles: Formation of lipofuscinlike fluorescent pigments, Science 166: 1535 (1969). ArticlePubMedCAS Google Scholar
L. Feeney-Burns, E. R. Berman, and M. S. Rothman, Lipofuscin of human retinal pigment epithelium, Am. J. Opinthalmol. 90: 783 (1980). CAS Google Scholar
G. E. Eldred and M. L. Katz, The autofluorescent products of lipid peroxidation may not be lipofuscin-like, Free Radical BioL Med. 7: 157 (1989). ArticleCAS Google Scholar
G. E. Eldred and M. L. Katz, Fluorophores of the human retinal pigment epithelium: Separation and spectral characterization, Exp. Eye Res., 47: 71 (1988). ArticleCAS Google Scholar
G. E. Eldred, Vitamins A and E in RPE lipofuscin formation and implications for age-related macular degeneration, in: “Inherited and Environmentally Induced Retinal Degenerations,” M. M. LaVail, R. E. Anderson, and J. G. Hollyfield, eds., Alan R. Liss, Inc., New York (1989). Google Scholar
G. E. Eldred and M. R. Lasky, Retinal age pigments caused by novel self-assembling lysosomotropic detergents, submitted. Google Scholar
F. D. Collins and R. A. Morton, Studies on rhodopsin. 2. Indicator yellow, Biochem. J. 47: 10 (1950). PubMedCAS Google Scholar
K. Tsukida and M. Ito, The structure of kitol, J. Nutt: Sci. Vitaminol. 26: 319 (1980). ArticleCAS Google Scholar
K-H. Pfoertner, G. Englert, and P. Schoenholzer, Photosensitized [4 + 2] cyclodimerizations of aromatic retinoids, Tetrahedron 44: 1039 (1988). ArticleCAS Google Scholar
J. T. Cross, A critical review of techniques for the identification and determination of cationic surfactants, in: “Cationic Surfactants,” E. Jungermann, ed., Marcel Dekker, Inc., New York (1970). Google Scholar
S. J. Fliesler and R. E. Anderson, Chemistry and metabolism of lipids in the vertebrate retina, Prog. Lipid Res. 22: 79 (1983). ArticlePubMedCAS Google Scholar
H. Shichi and R. L. Somers, Possible involvement of retinylidene phospholipid in photoisomerization of all-_trans_-retinal to 11-_cis_-retinal, J. Biot Chem. 249: 6570 (1974). CAS Google Scholar
G. W. T. Groenendijk, C. W. M. Jacobs, S. L. Bonting, and E. J. M. Daemen, Dark isomerization of retinals in the presence of phosphatidylethanolamine, Eur. J. Biochem. 106: 119 (1980). ArticlePubMedCAS Google Scholar
D. Lukton and R. R. Rando, Catalysis of vitamin A aldehyde isomerization by primary and secondary amines, J. Am. Chem. Soc. 106: 4525 (1984). ArticleCAS Google Scholar
M. L. Katz, G. E. Eldred, and W. G. Robison, Jr., Lipofuscin autofluorescence: Evidence for vitamin A involvement in the retina, Mech. AgeingDev. 39: 81 (1987). ArticlePubMedCAS Google Scholar
G. E. Eldred, The fluorophores of the RCS rat retina and implications for retinal degeneration, in: “Retinal Degenerations,” R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, eds., CRC Press, Boca Raton, FL (1991). Google Scholar
W. E. Zimmerman, E. Lion, E. J. M. Daemen, and S. L. Bonting, Biochemical aspects of the visual process. XXX. Distribution of stereospecific retinol dehydrogenase activities in subcellular fractions of bovine retina and pigment epithelium, Exp. Eye Res. 21: 325 (1975). ArticlePubMedCAS Google Scholar
S. Robert, P. Tancrede, C. Salesse, and R. M. LeBlanc, Interactions in mixed monolayers between distearoyl-L-phosphatidylethanolamine, rod outer segment phosphatidylethanolamine and all-trans retinal, Biochim. Biophys. Acta 730: 217 (1983). ArticlePubMedCAS Google Scholar
R. W Layer, The chemistry of imines, Chem. Res: 63: 489 (1963). CAS Google Scholar
R. E. Anderson and M. B. Maude, Phospholipids of bovine rod outer segments, Biochemistry 9: 3624 (1970). ArticlePubMedCAS Google Scholar
S. Dayagi and Y. Degani, Methods of formation of the carbon-nitrogen double bond, in: “The Chemistry of the Carbon-Nitrogen Double Bond,” S. Patai, ed., Interscience Publ., New York (1970). Google Scholar
C. deDuve, T. deBarsy, B. Poole, A. Trouet, P. Thlkens, and E Van Hoof, Lysosomotropic agents, Biochem. Pharmacol. 23: 2495 (1974). ArticleCAS Google Scholar
Y. Matsumoto, T Watanabe, T. Suga, and H. Fujitani, Inhibitory effects of quaternary ammonium compounds on lysosomal degradation of endogenous proteins, Chem. Pharm. Bull. 37: 516 (1989). ArticlePubMedCAS Google Scholar
D. Rideout, J. Jaworski and R. Dagnino, Jr., Environment-selective synergism using self-assembling cytotoxic and antimicrobial agents, Biochem. Pharmacol. 37: 4505 (1988). ArticlePubMedCAS Google Scholar
C. J. Duncan and M. F. Rudge, Are lysosomal enzymes involved in rapid damage in vertebrate muscle cells? A study of the separate pathways leading to cellular damage, Cell Tissue Res. 253: 447 (1988). PubMedCAS Google Scholar
S. P. E Miller, S. A. French, and C. R. Kaneski, Synthesis and characterization of a novel lysosomotropic enzyme substrate that fluoresces at intracellular pH, J. Org. Chem. 56: 30 (1991). ArticleCAS Google Scholar
M. E Raines, S. K. Bhargava, and E. S. Rosen, The blood-retinal barrier in chloroquine retinopathy, Invest. Ophthalmol. Vs. Sci. 30: 1726 (1989). CAS Google Scholar
R. A. Firestone, J. M. Pisano, and R. J. Bonney, Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents, J. Med. Chem. 22: 1130 (1979). ArticlePubMedCAS Google Scholar
J. M. Pisano and R. A. Firestone, Lysosomotropic agents. III. Synthesis of N-retinyl morpholine, Synth. Conm. 11: 375 (1981). ArticleCAS Google Scholar
D. K. Miller, E. Griffiths, J. Lenard, and R. A. Firestone, Cell killing by lysosomotropic detergents, J. Cell Biol 97: 1841 (1983). ArticlePubMedCAS Google Scholar
M. O. Bradley, V. I. Taylor, M. J. Armstrong, and S. M. Galloway, Relationship among cytotoxicity, lysosomal breakdown, chromosome aberrations, and DNA double-strand breaks, Mutation Res. 189: 69 (1987). ArticlePubMedCAS Google Scholar
S. Forster, L. Scarlett, and J. B. Lloyd, The effect of lysosomotropic detergents on the permeability properties of the lysosome membrane, Biochim. Biophys. Acta 924: 452 (1987). ArticlePubMedCAS Google Scholar
C. M. Martinez, S. Ayala, A. Coquet, M. Lepinay, O. Michel, T. Robles, E. Chiang, K. Alexanderson, P. E. Sanchez, and J. Lever, Malignant cell autolysis caused by intracytoplasmic liberation of lysosomal enzymes, Cell Biol. Intestat. Rep., 14: 255 (1990). ArticleCAS Google Scholar
A. L. Kovacs, A. Reith, and P. O. Seglen, Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine, Exp. Cell Res.,137: 191 (1982). ArticlePubMedCAS Google Scholar
M. S. Ramsey and B. S. Fine, Chloroquine toxicity in the human eye. Histopathologic observations by electron microscopy, Am. J. Ophthalmol. 73: 229 (1972). PubMedCAS Google Scholar
A. R. Rosenthal, H. Kolb, D. Bergsma, D. Huxsoll, and J. L. Hopkins, Chloroquine retinopathy in the rhesus monkey, Invest. Ophthahnol. Vis. Sci. 17: 1158 (1978). CAS Google Scholar
K. R. Brizzee and J. M. Ordy, Cellular features, regional accumulation, and prospects of modification of age pigments in mammals, in: “Age Pigments,” Elsevier/North-Holland Biomedical Press, New York (1981). Google Scholar
M. L. Katz and M. J. Shanker, Development of lipofuscin-like fluorescence in the retinal pigment epithelium in response to protease inhibitor treatment, Mech. Ageing Devel. 49: 23 (1989). ArticleCAS Google Scholar
G. O. Ivy, E Schottler, J. Wenzel, M. Baudry, and G. Lynch, Inhibitors of lysosomal enzymes: Accumulation of lipofuscin-like dense bodies in the brain, Science 226: 985 (1984). ArticlePubMedCAS Google Scholar
G. O. Ivy, Y. Ihara, and K. Kitani, The protease inhibitor leupeptin induces several signs of aging in brain, retina and internal organs of young rats, Arch. Gerontol. Geriatr. 12: 119 (1991). ArticlePubMedCAS Google Scholar
M. L. Katz, Incomplete proteolysis may contribute to lipofuscin accumulation in the retinal pigment epithelium, in: “Lipofuscin and Ceroid Pigments,” E. A. Porta, ed., Plenum Press, New York (1990). Google Scholar
M. L. Katz, C. M. Drea, and W. G. Robison, Jr., Relationship between dietary retinol and lipofuscin in the retinal pigment epithelium, Mech. Ageing Devel. 35: 291 (1986). ArticleCAS Google Scholar
R. W. Young, Solar radiation and age-related macular degeneration, Sun: Ophthalmol. 32: 252 (1988). ArticleCAS Google Scholar
B. Munoz, S. West, N. Bressler, S. Bressler, E S. Rosenthal, and H. R. Taylor, Blue light and risk of age-related macular degeneration, Invest. Ophthalmol. Vis. Sci. 31(Suppl.): 49 (1990). Google Scholar
J. J. Weiter, E. C. Delori, G. L. Wing, and K. A. Fitch, Relationship of senile macular degeneration to ocular pigmentation, Ant. J. Ophthalmol. 99: 185 (1985). CAS Google Scholar
J. C. Saari and L. Bredberg, Enzymatic reduction of 11-cis-retinal bound to cellular retinal binding protein, Biochim. Biophys. Acta 716: 266 (1982). ArticlePubMedCAS Google Scholar
D. A. Newsome, M. Swartz, N. C. Leone, R. C. Elston, and E. Miller, Oral zinc in macular degeneration, Arch. Ophthalmol. 106: 192 (1988). ArticlePubMedCAS Google Scholar
A. E. Leure-duPree, Electron-opaque inclusions in the rat retinal pigment epithelium after treatment with chelators of zinc, Invest. Ophthalmol. Vis. Sci. 21: 1 (1981). PubMedCAS Google Scholar
A. E. Leure-duPree and C. J. McClain, The effects of severe zinc deficiency on the morphology of the rat retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci. 23: 425 (1982). PubMedCAS Google Scholar
K. W. Small, J. L. Weber, A. Roses, E Lennon, J. M. Vance, and M. A. Pericakvance, North Carolina macular dystrophy is assigned to chromosome 6, Genomics 13: 681 (1992). ArticlePubMedCAS Google Scholar
M. B. Gorin, T. O. Paul, J. Ngo, D. E. Weeks, C. Sarneso and C. Berkebile, Genetics of age-related maculopathy: Clinical phenotypes, intrafamilial concordance and theoretical considerations for molecular studies, in: “Retinal Degeneration: Clinical and Laboratory Applications,” J. G. Hollyfield, M. M. LaVail, and R. E. Anderson, eds., Plenum Publ., New York (1993). Google Scholar
M. P. Sheetz and S. J. Singer, Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions, Proc. Nat. Acad. Sci. USA 71: 4457 (1974). ArticlePubMedCAS Google Scholar
P. R. Cullis and B. de Kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559: 399 (1979). ArticlePubMedCAS Google Scholar
H. Hagerstrand and B. Isomaa, Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles, Biochim. Biophys. Acta 1109: 117 (1992). ArticlePubMedCAS Google Scholar
D. Bok, Retinal photoreceptor-pigment epithelium interactions, Invest. Ophthalmol. Vis. Sci. 26: 1659 (1985). PubMedCAS Google Scholar
L. M. DeLuca, The direct involvement of vitamin A in glycosyl transfer reactions of mammalian membranes, Vitam. Hormones 35: 1 (1977). ArticleCAS Google Scholar
H. de The, A. Marchio, P. Tiollais, and A. Dejean, Differential expression and ligand regulation of retinoic acid receptor a and ß genes, EMBO J. 8: 429 (1989). PubMed Google Scholar
C. J. Tabin, Retinoids, homeoboxes, and growth factors: Toward molecular models for limb development, Cell 66: 199 (1991). ArticlePubMedCAS Google Scholar