Clinical Blood Flow Measurement with [15O] Water and Positron Emission Tomography (PET) (original) (raw)
References
Bol, A.., Vanmelckenbeke, P., Michel, C., Cogneau, M., Goflïnet, A.M., 1990, Measurement of cerebral blood flow with a bolus of oxygen-15-labelled water: Comparison of dynamic and integral methods, Eur J. Nuc Med. 17: 234–241. ArticleCAS Google Scholar
Callahan, F.J., 1985, “Swagelok® Tube Fitting and Installation Manual”, Crawford Fitting Company, Niagara Falls, Ontario. Google Scholar
Clark, J.C., Buckingham, P.D., 1975, “Short-lived Radioactive Gases for Clinical Use,” Butterworths, London. Google Scholar
Cyclone 3, 18/9, 30, IBA (Ion Beam Applications), Chemin du Cyclotron 2, B-1348 Louvain-La-Neuve, Belgium. Google Scholar
Ginsberg, M.D., Lockwood, A.H., Busto, R., Finn, R.D., Butler, C.M., Cendan, I.E., Goddard, J., 1982, A simplified in vivo autoradiographic strategy for the determination of regional cerebral blood flow by positron emission tomography: Theoretical considerations and validation studies in the rat. J. Cerebral Blood Flow Metab. 2: 89–98. ArticleCAS Google Scholar
Herscovitch, P., Markham, J., Raichle, M.E., 1983, Brain blood flow measured with intravenous H2–150. I. Theory and error analysis, J. Nuc Med. 24: 782–789. CAS Google Scholar
Herscovich, P., Raichle, M.E., Kilbourn, M.R., Welch, M.J., 1987, Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [nC]butanol, J. Cerebral Blood Flow Metab. 7: 527–542. Article Google Scholar
Hichwa, R.D., Nickles, R.J., 1979, The tuned pipeline — A link between small accelerators and nuclear medical needs, IEEE Trans Nucl Sci. NS-26: 1701–1709. Article Google Scholar
Hichwa, R.D., Johnston, D.J., Ponto, L.L., Watkins, G.L., 1991, Handheld automated injector for 0–15 water studies, J. Nucl Med. 32: 1063 Google Scholar
Howard, B.E., Ginsberg, M.D., Hassel, W.R., Lockwood, A.H., Freed, P., 1983, On the uniqueness of cerebral blood flow measured by the in vivo autoradiographic strategy and positron emission tomography, J. Cerebral Blood Flow Metab. 3: 432–441. ArticleCAS Google Scholar
Hurtig, R.R., Hichwa, R.D., O’Leary, D.S., Ponto, L.L.B., Narayana, S., Watkins, G.L., Andreasen, N.C., 1994, A quantitative assessment of the timing and duration of cognitive activation in [15O] water PET studies, J. Cerebral Blood Flow Metab. in press. Google Scholar
Iida, H., Kanno, I., Miura, S., Murakami, M., Takahashi, K., Uemura, K., 1986, Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function, J. Cerebral Blood Flow Metab. 6: 536–545. ArticleCAS Google Scholar
Iida, H., Higano, S., Tomura, N., Shishido, F., Kanno, I., Miura, S., Murakami, M., Takahashi, K., Sasaki, H., Uemura, K., 1988, Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography, J. Cerebral Blood Flow Metab. 8: 285–288. ArticleCAS Google Scholar
Iida, H., Kanno, I., Miura, S., Murakami, M., Takahashi, K., Uemura, K., 1989, A deterrnination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography, J. Cerebral Blood Flow Metab. 9: 874–885. ArticleCAS Google Scholar
Kanno, I., Iida, H., Miura, S., Murakami, M., Takahashi, K., Sasaki, H., Inugami, A., Shishido, F., Uemura, K., 1987, A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography, J. Cerebral Blood Flow Metab. 7: 143–153. ArticleCAS Google Scholar
Kanno, I., Iida, H., Miura, S., Murakami, M., 1991, Optimal scan time of oxygen-15-labeled water injection method for measurement of cerebral blood flow, J. Nuc Med. 32: 1931–1934. CAS Google Scholar
Kety, S., 1951, The theory and application of the exchange of inert gas at the lungs and tissue., Pharmacological Reviews 3: 1–41. PubMedCAS Google Scholar
Koeppe, R.A., Holden, J.E., Polcyn, R.E., et al., 1985, Quantitation of local cerebral blood flow and partition coefficient without arterial sampling: Theory and validation, J. Cerebral Blood Flow Metab. 5: 214–224. ArticleCAS Google Scholar
Koeppe, R.A., Hutchins, G.D., Rothley, J.M., Hichwa, R.D., 1987, Examination of assumptions for local cerebral blood flow studies in PET, J. Nucl Med. 28: 1695–1703. PubMedCAS Google Scholar
Larson, K.B., Markham, J., Raichle, M.E., 1987, Tracer-kinetic models for measuring cerebral blood flow using externally detected radiotracers, J. Cerebral Blood Flow Metab. 7: 443–463. ArticleCAS Google Scholar
Madsen, M.T., Ponto, J.A., 1992, “Medical Physics Handbook of Nuclear Medicine”, Medical Physics Publishing, Madison, Wisconsin. Google Scholar
Meyer, E., 1989, Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H2 15O autoradiographic method and dynamic PET, J. Nuc Med. 30: 1069–1078. CAS Google Scholar
NHVG, PracSys Corp., 400 West Cummings Park, Suite 6650, Woburn, MA 01801. Google Scholar
PETtrace, GEMS (G E Medical Systems), P.O. Box 414, Milwaukee, WI 53201. Google Scholar
Raichle, M.E., Martin, W.R.W., Herscovitch, P., Mintun, M.A., Markham, J., 1983, Brain blood flow measured with intravenous H2–150. II. Implementation and validation, J. Nuc Med. 24: 790–798. CAS Google Scholar
RDS, Siemens Medical Systems, 2501 Barrington Road, Hoffman Estates, IL 60195. Google Scholar
Volkow, N.D., Mullani, N., Gould, L.K., Adler, S.S., Gatley, S.J., 1991, Sensitivity of measurements of regional brain activation with oxygen-15-water and PET to time of stimulation and period of image reconstruction, J. Nuc Med. 32: 58–61. CAS Google Scholar