Hematopoietic Stem and Progenitor Cell Mobilization in Mice (original) (raw)
Korbling M, Anderlini P (2001) Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 98:2900–2908 ArticleCASPubMed Google Scholar
Weaver CH, Hazelton B, Birch R et al (1995) An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86:3961–3969 CASPubMed Google Scholar
Bender JG, To LB, Williams S et al (1992) Defining a therapeutic dose of peripheral blood stem cells. J Hematother 1:329–341 ArticleCASPubMed Google Scholar
Bensinger W, Appelbaum F, Rowley S et al (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13:2547–2555 CASPubMed Google Scholar
Ketterer N, Salles G, Raba M et al (1998) High CD34(+) cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation. Blood 91:3148–3155 CASPubMed Google Scholar
Passos-Coelho JL, Braine HG, Davis JM et al (1995) Predictive factors for peripheral-blood progenitor-cell collections using a single large-volume leukapheresis after cyclophosphamide and granulocyte-macrophage colony-stimulating factor mobilization. J Clin Oncol 13: 705–714 CASPubMed Google Scholar
Reiffers J, Faberes C, Boiron JM et al (1994) Peripheral blood progenitor cell transplantation in 118 patients with hematological malignancies: analysis of factors affecting the rate of engraftment. J Hematother 3:185–191 ArticleCASPubMed Google Scholar
Yoon DH, Sohn BS, Jang G et al (2009) Higher infused CD34+ hematopoietic stem cell dose correlates with earlier lymphocyte recovery and better clinical outcome after autologous stem cell transplantation in non-Hodgkin's lymphoma. Transfusion 49:1890–1900 ArticleCASPubMed Google Scholar
Siena S, Schiavo R, Pedrazzoli P et al (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 18:1360–1377 CASPubMed Google Scholar
Stiff PJ, Micallef I, Nademanee AP et al (2011) Transplanted CD34(+) cell dose is associated with long-term platelet count recovery following autologous peripheral blood stem cell transplant in patients with non-Hodgkin lymphoma or multiple myeloma. Biol Blood Marrow Transplant 17:1146–1153 ArticleCASPubMed Google Scholar
DiPersio JF (2010) Can every patient be mobilized? Best Pract Res Clin Haematol 23: 519–523 ArticlePubMed Google Scholar
Giralt S, Stadtmauer EA, Harousseau JL et al (2009) International myeloma working group (IMWG) consensus statement and guidelines regarding the current status of stem cell collection and high-dose therapy for multiple myeloma and the role of plerixafor (AMD 3100). Leukemia 23:1904–1912 ArticleCASPubMed Google Scholar
Gertz MA, Kumar SK, Lacy MQ et al (2009) Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant 43:619–625 ArticleCASPubMed CentralPubMed Google Scholar
Schulman KA, Birch R, Zhen B et al (1999) Effect of CD34(+) cell dose on resource utilization in patients after high-dose chemotherapy with peripheral-blood stem-cell support. J Clin Oncol 17:1227 CASPubMed Google Scholar
To LB, Haylock DN, Simmons PJ et al (1997) The biology and clinical uses of blood stem cells. Blood 89:2233–2258 CASPubMed Google Scholar
Gordan LN, Sugrue MW, Lynch JW et al (2003) Poor mobilization of peripheral blood stem cells is a risk factor for worse outcome in lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 44:815–820 ArticleCASPubMed Google Scholar
Pavone V, Gaudio F, Console G et al (2006) Poor mobilization is an independent prognostic factor in patients with malignant lymphomas treated by peripheral blood stem cell transplantation. Bone Marrow Transplant 37: 719–724 ArticleCASPubMed Google Scholar
Akhtar S, Weshi AE, Rahal M et al (2008) Factors affecting autologous peripheral blood stem cell collection in patients with relapsed or refractory diffuse large cell lymphoma and Hodgkin lymphoma: a single institution result of 168 patients. Leuk Lymphoma 49: 769–778 ArticleCASPubMed Google Scholar
Pusic I, Jiang SY, Landua S et al (2008) Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 14:1045–1056 ArticleCASPubMed Google Scholar
Hosing C, Saliba RM, Ahlawat S et al (2009) Poor hematopoietic stem cell mobilizers: a single institution study of incidence and risk factors in patients with recurrent or relapsed lymphoma. Am J Hematol 84:335–337 ArticleCASPubMed Google Scholar
Attal M, Harousseau JL, Facon T et al (2003) Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 349:2495–2502 ArticleCASPubMed Google Scholar
Cavo M, Tosi P, Zamagni E et al (2007) Prospective, randomized study of single compared with double autologous stem-cell transplantation for multiple myeloma: Bologna 96 clinical study. J Clin Oncol 25:2434–2441 ArticlePubMed Google Scholar
DiPersio JF, Micallef IN, Stiff PJ et al (2009) Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin's lymphoma. J Clin Oncol 27:4767–4773 ArticleCASPubMed Google Scholar
DiPersio JF, Stadtmauer EA, Nademanee A et al (2009) Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 113:5720–5726 CASPubMed Google Scholar
Kymes SM, Pusic I, Lambert DL et al (2012) Economic evaluation of plerixafor for stem cell mobilization. Am J Manag Care 18:33–41 PubMed CentralPubMed Google Scholar
Rettig MP, Ansstas G, DiPersio JF (2012) Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 26:34–53 ArticleCASPubMed CentralPubMed Google Scholar
Roberts AW, Foote S, Alexander WS et al (1997) Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood 89:2736–2744 CASPubMed Google Scholar
Watters JW, Kloss EF, Link DC et al (2003) A mouse-based strategy for cyclophosphamide pharmacogenomic discovery. J Appl Physiol 95:1352–1360 CASPubMed Google Scholar
Hoggatt J, Pelus LM (2012) Hematopoietic stem cell mobilization with agents other than G-CSF. In: Kolonin MG, Simmons PJ (eds) Stem cell mobilization: methods and protocols. Springer, New York, pp 49–67 Chapter Google Scholar
Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661 ArticleCASPubMed Google Scholar
Johnson MD, Gad SC (2007) The rat. In: Gad SC (ed) Animal models in toxicology, 2nd edn. CRC Press, Boca Raton, pp 150–173 Google Scholar
Brown AP, Dinger N, Levine BS (2000) Stress produced by gavage administration in the rat. Contemp Top Lab Anim Sci 39:17–21 CASPubMed Google Scholar
Dobrakovova M, Jurcovicova J (1984) Corticosterone and prolactin responses to repeated handling and transfer of male rats. Exp Clin Endocrinol 83:21–27 ArticleCASPubMed Google Scholar
Hoggatt AF, Hoggatt J, Honerlaw M et al (2010) A spoonful of sugar helps the medicine go down: a novel technique to improve oral gavage in mice. J Am Assoc Lab Anim Sci 49:329–334 PubMed CentralPubMed Google Scholar
King AG, Horowitz D, Dillon SB et al (2001) Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 97:1534–1542 ArticleCASPubMed Google Scholar
Pelus LM, Bian H, King AG et al (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 103: 110–119 ArticleCASPubMed Google Scholar
Pruijt JF, Verzaal P, Van Os R et al (2002) Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci U S A 99: 6228–6233 ArticleCASPubMed CentralPubMed Google Scholar
Fukuda S, Bian H, King AG et al (2007) The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 110:860–869 ArticleCASPubMed CentralPubMed Google Scholar
Hoggatt J, Mohammad KS, Singh P et al (2013) Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature 495:365–369 ArticleCASPubMed CentralPubMed Google Scholar
Mendez-Ferrer S, Lucas D, Battista M et al (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447 ArticleCASPubMed Google Scholar
Lucas D, Battista M, Shi PA et al (2008) Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3:364–366 ArticleCASPubMed CentralPubMed Google Scholar
Golde WT, Gollobin P, Rodriguez LL (2005) A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim (NY) 34:39–43 Article Google Scholar
Hill JM, Syed MA, Arai AE et al (2005) Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 46: 1643–1648 ArticleCASPubMed CentralPubMed Google Scholar
Lindemann A, Rumberger B (1993) Vascular complications in patients treated with granulocyte colony-stimulating factor (G-CSF). Eur J Cancer 29A:2338–2339 ArticleCASPubMed Google Scholar
Saez B, Ferraro F, Yusuf RZ et al (2012) Hematopoietic stem/progenitor cell retention in the bone marrow depends on tissue specific heparan sulfate proteoglycans. Blood 112: Abstract 637 Google Scholar
Broxmeyer HE, Mejia JA, Hangoc G et al (2007) SDF-1/CXCL12 enhances in vitro replating capacity of murine and human multipotential and macrophage progenitor cells. Stem Cells Dev 16:589–596 ArticleCASPubMed Google Scholar
Pelus LM, Broxmeyer HE, Kurland JI et al (1979) Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferrin. J Exp Med 150: 277–292 ArticleCASPubMed CentralPubMed Google Scholar
Lowry PA, Zsebo KM, Deacon DH et al (1991) Effects of rrSCF on multiple cytokine responsive HPP-CFC generated from SCA + Lin- murine hematopoietic progenitors. Exp Hematol 19:994–996 CASPubMed Google Scholar
Bradley TR, Hodgson GS (1979) Detection of primitive macrophage progenitor cells in mouse bone marrow. Blood 54:1446–1450 CASPubMed Google Scholar
McLeod DL, Shreve MM, Axelrad AA (1976) Induction of megakaryocyte colonies with platelet formation in vitro. Nature 261:492–494 ArticleCASPubMed Google Scholar
Johnson GR, Metcalf D (1977) Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc Natl Acad Sci U S A 74:3879–3882 ArticleCASPubMed CentralPubMed Google Scholar
Hara H, Ogawa M (1978) Murine hemopoietic colonies in culture containing normoblasts, macrophages, and megakaryocytes. Am J Hematol 4:23–34 ArticleCASPubMed Google Scholar
Fauser AA, Messner HA (1978) Granuloerythropoietic colonies in human bone marrow, peripheral blood, and cord blood. Blood 52:1243–1248 CASPubMed Google Scholar
Fauser AA, Messner HA (1979) Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neutrophilic granulocytes and erythroblasts. Blood 53:1023–1027 CASPubMed Google Scholar
Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62 ArticleCASPubMed Google Scholar
Okada S, Nakauchi H, Nagayoshi K et al (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050 CASPubMed Google Scholar
Ogawa M, Matsuzaki Y, Nishikawa S et al (1991) Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 174:63–71 ArticleCASPubMed Google Scholar
Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci U S A 89: 1502–1506 ArticleCASPubMed CentralPubMed Google Scholar
Adolfsson J, Borge OJ, Bryder D et al (2001) Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669 ArticleCASPubMed Google Scholar
Yang L, Bryder D, Adolfsson J et al (2005) Identification of Lin(−)Sca1(+)kit(+)CD34(+)Flt3− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105: 2717–2723 ArticleCASPubMed Google Scholar
Osawa M, Hanada K, Hamada H et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245 ArticleCASPubMed Google Scholar
Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112: 3543–3553 ArticleCASPubMed CentralPubMed Google Scholar
Chen J, Ellison FM, Keyvanfar K et al (2008) Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp Hematol 36: 1236–1243 ArticleCASPubMed CentralPubMed Google Scholar
Yilmaz OH, Kiel MJ, Morrison SJ (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107:924–930 ArticleCASPubMed CentralPubMed Google Scholar
Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121 ArticleCASPubMed Google Scholar
Ogawa M, Tajima F, Ito T et al (2001) CD34 expression by murine hematopoietic stem cells. Developmental changes and kinetic alterations. Ann N Y Acad Sci 938:139–145 ArticleCASPubMed Google Scholar
Johnnidis JB, Camargo FD (2008) Isolation and functional characterization of side population stem cells. Methods Mol Biol 430: 183–193 ArticleCASPubMed Google Scholar
Srour EF, Yoder MC (2005) Flow cytometric analysis of hematopoietic development. Methods Mol Med 105:65–80 PubMed Google Scholar
Harrison DE (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55:77–81 CASPubMed Google Scholar
Harrison DE, Jordan CT, Zhong RK et al (1993) Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol 21:206–219 CASPubMed Google Scholar
Shen FW, Tung JS, Boyse EA (1986) Further definition of the Ly-5 system. Immunogenetics 24:146–149 CASPubMed Google Scholar
Hoggatt J, Mohammad KS, Singh P, Pelus LM (2013) Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness. Blood 122:2997–3000 Google Scholar
Szilvassy SJ, Lansdorp PM, Humphries RK et al (1989) Isolation in a single step of a highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability. Blood 74:930–939 CASPubMed Google Scholar
Szilvassy SJ, Humphries RK, Lansdorp PM et al (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A 87:8736–8740 ArticleCASPubMed CentralPubMed Google Scholar
Taswell C (1981) Limiting dilution assays for the determination of immunocompetent cell frequencies. I Data analysis. J Immunol 126: 1614–1619 CASPubMed Google Scholar
Benveniste P, Frelin C, Janmohamed S et al (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6:48–58 ArticleCASPubMed Google Scholar
Ogden DA, Mickliem HS (1976) The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22:287–293 ArticleCASPubMed Google Scholar