The Wheat Germ Cell-Free Expression System (original) (raw)

References

  1. Blaschke, U. K., Silberstein, J., and Muir, T. W. (2000) Protein engineering by expressed protein ligation. Methods Enzymol. 328, 478–496.
    Article PubMed CAS Google Scholar
  2. Henrich, B., Lubitz, W., and Plapp, R. (1982) Lysis of Escherichia coli by induction of cloned phi X174 genes. Mol. Gen. Genet. 185, 493–497.
    Article PubMed CAS Google Scholar
  3. Golf, S. A. and Goldberg, A. L. (1987) An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. J. Biol. Chem. 262, 4508–4515.
    Google Scholar
  4. Chrunyk, B. A., Evans, J., Lillquist, J., Young, P., and Wetzel, R. (1993) Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J. Biol. Chem. 268, 18,053–18,061.
    PubMed CAS Google Scholar
  5. Kurland, C. G. (1982) Translational accuracy in vitro. Cell 28, 201–202.
    Article PubMed CAS Google Scholar
  6. Pavlov, M. Y. and Ehrenberg, M. (1996) Mutants of EF-Tu defective in binding aminoacyl-tRNA. Arch. Biochem. Biophys. 328, 9–16.
    Article PubMed CAS Google Scholar
  7. Roberts, B. E. and Paterson, B. M. (1973) Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc. Natl. Acad. Sci. USA 70, 2330–2334.
    Article PubMed CAS Google Scholar
  8. Wool, I. G., Glück, A., and Endo, Y. (1992) Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem. Sci. 17, 266–269.
    Article PubMed CAS Google Scholar
  9. Barbieri, L., Battelli, M. G., and Stirpe, F. (1993) Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta 1154, 237–282.
    PubMed CAS Google Scholar
  10. Ogasawara, T., Sawasaki, T., Morishita, R., Ozawa, A., Madin, K., and Endo, Y. (1999) A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ. EMBO J. 18, 6522–6531.
    Article PubMed CAS Google Scholar
  11. Madin, K., Sawasaki, T., Ogasawara, T., and Endo, Y. (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97, 559–564.
    Article PubMed CAS Google Scholar
  12. Sawasaki, T., Ogasawara, T., Morishita, R., and Endo, Y. (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. USA 99, 14,652–14,657.
    Article PubMed CAS Google Scholar
  13. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Google Scholar
  14. Gurevich, V. V. (1996) Use of bacteriophage RNA polymerase in RNA synthesis. Methods Enzymol. 275, 382–397.
    Article PubMed CAS Google Scholar
  15. Hanes, J. and Pluckthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.
    Article PubMed CAS Google Scholar
  16. Sawasaki, T., Hasegawa, Y., Tsuchimochi, M., et al. (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514, 102–105.
    Article PubMed CAS Google Scholar
  17. Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Y., and Alakhov, Y. B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.
    Article PubMed CAS Google Scholar
  18. Endo, Y. and Sawasaki, T. (2004) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J. Struct. Funct. Genomics 5(1–2), 45–57.
    Article PubMed CAS Google Scholar

Download references