Multiple Alignment of DNA Sequences with MAFFT (original) (raw)
References
Woese, C. R., and Fox, G. E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA74, 5088–90. ArticlePubMedCAS Google Scholar
Flicek, P., Keibler, E., Hu, P., Korf, I., and Brent, M. R. (2003) Leveraging the mouse genome for gene prediction in human: from whole-genome shotgun reads to a global synteny map. Genome Res13, 46–54. ArticlePubMedCAS Google Scholar
Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res30, 3059–66. ArticlePubMedCAS Google Scholar
Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res33, 511–8. ArticlePubMedCAS Google Scholar
Wilm, A., Mainz, I., and Steger, G. (2006) An enhanced RNA alignment benchmark for sequence alignment programs. Algorithms Mol Biol1, 19. ArticlePubMed Google Scholar
Carroll, H., Beckstead, W., O’connor, T., Ebbert, M., Clement, M., Snell, Q., and McClellan, D. (2007) DNA reference alignment benchmarks based on tertiary structure of encoded proteins. Bioinformatics23, 2648–49. Google Scholar
Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E. D., Haussler, D., and Miller, W. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res14, 708–15. ArticlePubMedCAS Google Scholar
Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T. (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res14, 1394–403. ArticlePubMedCAS Google Scholar
Edgar, R. C., and Batzoglou, S. (2006) Multiple sequence alignment. Curr Opin Struct Biol16, 368–73. ArticlePubMedCAS Google Scholar
Needleman, S. B., and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol48, 443–53. ArticlePubMedCAS Google Scholar
Smith, T. F., and Waterman, M. S. (1981) Identification of common molecular subsequences. J Mol Biol147, 195–7. ArticlePubMedCAS Google Scholar
Gotoh, O. (1982) An improved algorithm for matching biological sequences. J Mol Biol162, 705–8. ArticlePubMedCAS Google Scholar
Feng, D. F., and Doolittle, R. F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol25, 351–60. ArticlePubMedCAS Google Scholar
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22, 4673–80. ArticlePubMedCAS Google Scholar
Katoh, K., and Toh, H. (2007) Parttree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics23, 372–4. ArticlePubMedCAS Google Scholar
Barton, G. J., and Sternberg, M. J. (1987) A strategy for the rapid multiple alignment of protein sequences. confidence levels from tertiary structure comparisons. J Mol Biol198, 327–37. ArticlePubMedCAS Google Scholar
Berger, M. P., and Munson, P. J. (1991) A novel randomized iterative strategy for aligning multiple protein sequences. Comput Appl Biosci7, 479–84. PubMedCAS Google Scholar
Gotoh, O. (1993) Optimal alignment between groups of sequences and its application to multiple sequence alignment. Comput Appl Biosci9, 361–70. PubMedCAS Google Scholar
Ishikawa, M., Toya, T., Hoshida, M., Nitta, K., Ogiwara, A., and Kanehisa, M. (1993) Multiple sequence alignment by parallel simulated annealing. Comput Appl Biosci9, 267–73. PubMedCAS Google Scholar
Notredame, C., and Higgins, D. G. (1996) Saga: sequence alignment by genetic algorithm. Nucleic Acids Res24, 1515–24. ArticlePubMedCAS Google Scholar
Gotoh, O. (1994) Further improvement in methods of group-to-group sequence alignment with generalized profile operations. Comput Appl Biosci10, 379–87. PubMedCAS Google Scholar
Gotoh, O. (1995) A weighting system and algorithm for aligning many phylogenetically related sequences. Comput Appl Biosci11, 543–51. PubMedCAS Google Scholar
Gotoh, O. (1996) Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J Mol Biol264, 823–38. ArticlePubMedCAS Google Scholar
Hirosawa, M., Totoki, Y., Hoshida, M., and Ishikawa, M. (1995) Comprehensive study on iterative algorithms of multiple sequence alignment. Comput Appl Biosci11, 13–18. PubMedCAS Google Scholar
Vingron, M., and Argos, P. (1989) A fast and sensitive multiple sequence alignment algorithm. Comput Appl Biosci5, 115–21. PubMedCAS Google Scholar
Gotoh, O. (1990) Consistency of optimal sequence alignments. Bull Math Biol52, 509–25. PubMedCAS Google Scholar
Notredame, C., Holm, L., and Higgins, D. G. (1998) COFFEE: an objective function for multiple sequence alignments. Bioinformatics14, 407–22. ArticlePubMedCAS Google Scholar
Notredame, C., Higgins, D. G., and Heringa, J. (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol302, 205–17. ArticlePubMedCAS Google Scholar
Higgins, D. G., and Sharp, P. M. (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene73, 237–44. ArticlePubMedCAS Google Scholar
Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci8, 275–82. PubMedCAS Google Scholar
Altschul, S. F. (1998) Generalized affine gap costs for protein sequence alignment. Proteins32, 88–96. ArticlePubMedCAS Google Scholar
Myers, E. W., and Miller, W. (1988) Optimal alignments in linear space. Comput Appl Biosci4, 11–17. PubMedCAS Google Scholar
Gribskov, M., McLachlan, A. D., and Eisenberg, D. (1987) Profile analysis: detection of distantly related proteins. Proc Natl Acad Sci USA, 84, 4355–58. ArticlePubMedCAS Google Scholar
Schwartz, S., Kent, W. J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R. C., Haussler, D., and Miller, W. (2003) Human-mouse alignments with BLASTZ. Genome Res13, 103–7. ArticlePubMedCAS Google Scholar
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search pro grams. Nucleic Acids Res25, 3389–402. ArticlePubMedCAS Google Scholar
Morgenstern, B., Goel, S., Sczyrba, A., and Dress, A. (2003) Altavist: comparing alternative multiple sequence alignments. Bioinformatics19, 425–6. ArticlePubMedCAS Google Scholar
Lassmann, T., and Sonnhammer, E. L. (2007) Automatic extraction of reliable regions from multiple sequence alignments. BMC Bioinformat8 Suppl 5, S9. Article Google Scholar
Morgenstern, B., Dress, A., and Werner, T. (1996) Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proc Natl Acad Sci USA93, 12098–103. ArticlePubMedCAS Google Scholar
Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32, 1792–7. ArticlePubMedCAS Google Scholar
Do, C. B., Mahabhashyam, M. S., Brudno, M., and Batzoglou, S. (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res15, 330–40. ArticlePubMedCAS Google Scholar
Lassmann, T., and Sonnhammer, E. L. (2005) Kalign – an accurate and fast multiple sequence alignment algorithm. BMC Bioinformat6, 298. Article Google Scholar
Wallace, I. M., O’Sullivan, O., Higgins, D. G., and Notredame, C. (2006) M-Coffee: combining multiple sequence alignment methods with t-coffee. Nucleic Acids Res34, 1692–9. ArticlePubMedCAS Google Scholar
Golubchik, T., Wise, M. J., Easteal, S., and Jermiin, L. S. (2007) Mind the gaps: Evidence of bias in estimates of multiple sequence alignments. Mol Biol Evol24, 2433–42. Google Scholar
Do, C. B., and Katoh, K. (2008) Protein multiple sequence alignment Functional Proteomics, Methods Mol Biol484, 379–413. Google Scholar
Morrison, D. (2006) Multiple sequence alignment for phylogenetic purposes. Aust Syst Bot19, 479–539. ArticleCAS Google Scholar
Roshan, U., and Livesay, D. R. (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics22, 2715–21. ArticlePubMedCAS Google Scholar
Yamada, S., Gotoh, O., and Yamana, H. (2006) Improvement in accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gap cost. BMC Bioinformat7, 524. Article Google Scholar
Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Green, E. D., Sidow, A., and Batzoglou, S. (2003) LAGAN and multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res13, 721–31. ArticlePubMedCAS Google Scholar
Bray, N., and Pachter, L. (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res.14, 693–9. ArticlePubMedCAS Google Scholar