Mitochondrial Regulation of Oxygen Sensing (original) (raw)
Schroedl C, McClintock DS, Budinger GRS, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1α requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:L922-L931 PubMedCAS Google Scholar
Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551-578 ArticlePubMedCAS Google Scholar
Planès C, Friedlander G, Loiseau A, Amiel C, Clerici C (1996) Inhibition of Na,K-ATPase activity after prolonged hypoxia in an alveolar epithelial cell line. Am J Physiol 271:L71-L78 Google Scholar
Aw TY, Jones DP (1982) Secondary bioenergetic hypoxia. Inhibition of sulfation and glucuronidation reactions in isolated hepatocytes at low O2 concentration. J Biol Chem 257:8997-9004 PubMedCAS Google Scholar
Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604-4613 PubMedCAS Google Scholar
Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510-5514 ArticlePubMedCAS Google Scholar
Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1α modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253-19260 ArticlePubMedCAS Google Scholar
Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271-275 ArticlePubMedCAS Google Scholar
Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468-472 ArticlePubMedCAS Google Scholar
Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J 20:5197-5206 ArticlePubMedCAS Google Scholar
Ivan M, Kondo K, Yang H et al (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464-468 ArticlePubMedCAS Google Scholar
Epstein AC, Gleadle JM, McNeill LA et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43-54 ArticlePubMedCAS Google Scholar
Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick R (2002) FIH-1 is an asparaginyl hydroxylase that regulates the transcriptional activity of hypoxia inducible factor. Genes Dev 16:1466-1471 ArticlePubMedCAS Google Scholar
Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295:858-861 ArticlePubMedCAS Google Scholar
Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675-2686 ArticlePubMedCAS Google Scholar
Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839-885 PubMedCAS Google Scholar
Srinivas V, Zhu X, Salceda S, Nakamura R, Caro J (1998) Hypoxia-inducible factor 1α (HIF-1α) is a non-heme iron protein. Implications for oxygen sensing. J Biol Chem 273:18019-18022 ArticlePubMedCAS Google Scholar
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:5015-5019 Article Google Scholar
Chandel NS, McClintock DS, Feliciano SE et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130-25138 ArticlePubMedCAS Google Scholar
King MP, Attardi G (1988) Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52:811-819 ArticlePubMedCAS Google Scholar
Hunte C, Palsdottir H, Trumpower BL (2003) Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett 545:39-46 ArticlePubMedCAS Google Scholar
Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557-5563 ArticlePubMedCAS Google Scholar
Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408-414 ArticlePubMedCAS Google Scholar
Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435-444 PubMedCAS Google Scholar
Gupte S, Wu ES, Hoechli L et al (1984) Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Proc Natl Acad Sci U S A 81:2606-2610 ArticlePubMedCAS Google Scholar
Kroger A, Klingenberg M (1973) Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem 39:313-323 ArticlePubMedCAS Google Scholar
Mansfield KD, Guzy RD, Pan Y et al (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1:393-399 ArticlePubMedCAS Google Scholar
Guzy RD, Hoyos B, Robin E et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401-408 ArticlePubMedCAS Google Scholar
Brunelle JK, Bell EL, Quesada NM et al (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409-414 ArticlePubMedCAS Google Scholar
Rana M, de Coo I, Diaz F, Smeets H, Moraes CT (2000) An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann Neurol 48:774-781 ArticlePubMedCAS Google Scholar
Bell EL, Klimova TA, Eisenbart J et al (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029-1036 ArticlePubMedCAS Google Scholar
Hirota K, Semenza GL (2001) Rac1 activity is required for the activation of hypoxia-inducible factor 1. J Biol Chem 276:21166-21172 ArticlePubMedCAS Google Scholar
Turcotte S, Desrosiers RR, Beliveau R (2003) HIF-1α mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci 116:2247-2260 ArticlePubMedCAS Google Scholar
Chandel NS, Budinger GR, Choe SH, Schumacker PT (1997) Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J Biol Chem 272:18808-18816 ArticlePubMedCAS Google Scholar
Milligan LP, McBride BW (1985) Energy costs of ion pumping by animal tissues. J Nutr 115:1374-1382 PubMedCAS Google Scholar
Carpenter TC, Schomberg S, Nichols C, Stenmark KR, Weil JV (2003) Hypoxia reversibly inhibits epithelial sodium transport but does not inhibit lung ENaC or Na-K-ATPase expression. Am J Physiol Lung Cell Mol Physiol 284:L77-L83 PubMedCAS Google Scholar
Mairbaurl H, Wodopia R, Eckes S, Schulz S, Bartsch P (1997) Impairment of cation transport in A549 cells and rat alveolar epithelial cells by hypoxia. Am J Physiol Lung Cell Mol Physiol 273:L797-L806 CAS Google Scholar
Dada LA, Chandel NS, Ridge KM, Pedemonte C, Bertorello AM, Sznajder JI (2003) Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ς. J Clin Invest 111:1057-1064 PubMedCAS Google Scholar
Chibalin AV, Ogimoto G, Pedemonte CH et al (1999) Dopamine-induced endocytosis of Na+,K+-ATPase is initiated by phosphorylation of Ser-18 in the rat α subunit and is responsible for the decreased activity in epithelial cells. J Biol Chem 274:1920-1927 ArticlePubMedCAS Google Scholar
Konishi H, Tanaka M, Takemura Y et al (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A 94:11233-11237 ArticlePubMedCAS Google Scholar
Feschenko MS, Sweadner KJ (1997) Phosphorylation of Na,K-ATPase by protein kinase C at Ser18 occurs in intact cells but does not result in direct inhibition of ATP hydrolysis. J Biol Chem 272:17726-17733 ArticlePubMedCAS Google Scholar
Bruick RK (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17:2614-2623 ArticlePubMedCAS Google Scholar
Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278:30772-30780 ArticlePubMed Google Scholar
Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271:C1172-C1180 PubMedCAS Google Scholar
Gleadle JM, Ebert BL, Ratcliffe PJ (1995) Diphenylene iodonium inhibits the induction of erythropoietin and other mammalian genes by hypoxia. Implications for the mechanism of oxygen sensing. Eur J Biochem 234:92-99 ArticlePubMedCAS Google Scholar
Killilea DW, Hester R, Balczon R, Babal P, Gillespie MN (2000) Free radical production in hypoxic pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 279:L408-L412 PubMedCAS Google Scholar
Wood JG, Johnson JS, Mattioli LF, Gonzalez NC (1999) Systemic hypoxia promotes leukocyte-endothelial adherence via reactive oxidant generation. J Appl Physiol 87:1734-1740 PubMedCAS Google Scholar
Fandrey J, Frede S, Jelkmann W (1994) Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J 303:507-510 PubMedCAS Google Scholar
Tarpey MM, Fridovich I (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89:224-236 ArticlePubMedCAS Google Scholar
Dirmeier R, O’Brien KM, Engle M, Dodd A, Spears E, Poyton RO (2002) Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem 277:34773-34784 ArticlePubMedCAS Google Scholar
Grishko V, Solomon M, Breit JF et al (2001) Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene. FASEB J 15:1267-1269 PubMedCAS Google Scholar
Liu Q, Kuppusamy P, Sham JSK, Shimoda LA, Zweier JL, Sylvester JT (2001) Increased production of reactive oxygen species (ROS) by pulmonary arterial smooth muscle is required for hypoxic pulmonary vasoconstriction (HPV). Am J Respir Crit Care Med 163:A395 Google Scholar
Agani FH, Pichiule P, Chavez JC, LaManna JC (2000) The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 275:35863-35867 ArticlePubMedCAS Google Scholar
Enomoto N, Koshikawa N, Gassmann M, Hayashi J, Takenaga K (2002) Hypoxic induction of hypoxia-inducible factor-1α and oxygen-regulated gene expression in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 297:346-352 ArticlePubMedCAS Google Scholar
Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A, Caro J (2001) Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem 276:21995-21998 ArticlePubMedCAS Google Scholar
Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98:296-302 ArticlePubMedCAS Google Scholar
Miranda S, Foncea R, Guerrero J, Leighton F (1999) Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 258:44-49 ArticlePubMedCAS Google Scholar
Paddenberg R, Ishaq B, Goldenberg A et al (2003) Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 284:L710-L719 PubMedCAS Google Scholar
Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α.Science 302:1975-1978 ArticlePubMedCAS Google Scholar