Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26(3):131–137 PubMedCAS Google Scholar
Rozenfeld R, Abul-Husn NS, Gomez I, Devi LA (2007) An emerging role for the delta opioid receptor in the regulation of mu opioid receptor function. Sci World J 7:64–73 Google Scholar
Limbird LE, Meyts PD, Lefkowitz RJ (1975) Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun 64(4):1160–1168 PubMedCAS Google Scholar
Limbird LE, Lefkowitz RJ (1976) Negative cooperativity among beta-adrenergic receptors in frog erythrocyte membranes. J Biol Chem 251(16):5007–5014 PubMedCAS Google Scholar
Mattera R, Pitts BJ, Entman ML, Birnbaumer L (1985) Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. Evidence for homo- and heterotropic cooperativity in ligand binding analyzed by computer-assisted curve fitting. J Biol Chem 260(12):7410–7421 PubMedCAS Google Scholar
Potter LT, Ballesteros LA, Bichajian LH et al (1991) Evidence of paired M2 muscarinic receptors. Mol Pharmacol 39(2):211–221 PubMedCAS Google Scholar
Hirschberg BT, Schimerlik MI (1994) A kinetic model for oxotremorine M binding to recombinant porcine m2 muscarinic receptors expressed in Chinese hamster ovary cells. J Biol Chem 269(42):26127–26135 PubMedCAS Google Scholar
Wreggett KA, Wells JW (1995) Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J Biol Chem 270(38):22488–22499 PubMedCAS Google Scholar
Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med Biol 60(4):183–190 PubMedCAS Google Scholar
Conn PM, Rogers DC, Stewart JM, Niedel J, Sheffield T (1982) Conversion of a gonadotropin-releasing hormone antagonist to an agonist. Nature 296(5858):653–655 PubMedCAS Google Scholar
Fraser CM, Venter JC (1982) The size of the mammalian lung beta 2-adrenergic receptor as determined by target size analysis and immunoaffinity chromatography. Biochem Biophys Res Commun 109(1):21–29 PubMedCAS Google Scholar
Venter JC (1983) Muscarinic cholinergic receptor structure. Receptor size, membrane orientation, and absence of major phylogenetic structural diversity. J Biol Chem 258(8):4842–4848 PubMedCAS Google Scholar
Lilly L, Fraser CM, Jung CY, Seeman P, Venter JC (1983) Molecular size of the canine and human brain D2 dopamine receptor as determined by radiation inactivation. Mol Pharmacol 24(1):10–14 PubMedCAS Google Scholar
Conn PM, Venter JC (1985) Radiation inactivation (target size analysis) of the gonadotropin-releasing hormone receptor: evidence for a high molecular weight complex. Endocrinology 116(4):1324–1326 PubMedCAS Google Scholar
Frame LT, Yeung SM, Venter JC, Cooper DM (1986) Target size of the adenosine Ri receptor. Biochem J 235(2):621–624 PubMedCAS Google Scholar
Herberg JT, Codina J, Rich KA, Rojas FJ, Iyengar R (1984) The hepatic glucagon receptor. Solubilization, characterization, and development of an affinity adsorption assay for the soluble receptor. J Biol Chem 259(14):9285–9294 PubMedCAS Google Scholar
Maggio R, Vogel Z, Wess J (1993) Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci USA 90(7):3103–3107 PubMedCAS Google Scholar
Monnot C, Bihoreau C, Conchon S, Curnow KM, Corvol P, Clauser E (1996) Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two deficient mutants. J Biol Chem 271(3):1507–1513 PubMedCAS Google Scholar
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421(6919):127–128 PubMedCAS Google Scholar
Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278(24):21655–21662 PubMedCAS Google Scholar
Davies A, Gowen BE, Krebs AM, Schertler GF, Saibil HR (2001) Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. J Mol Biol 314(3):455–463 PubMedCAS Google Scholar
Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387 PubMedCAS Google Scholar
Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318(5854):1266–1273 PubMedCAS Google Scholar
Jones KA, Borowsky B, Tamm JA et al (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396(6712):674–679 PubMedCAS Google Scholar
White JH, Wise A, Main MJ et al (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396(6712):679–682 PubMedCAS Google Scholar
Kaupmann K, Malitschek B, Schuler V et al (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396(6712):683–687 PubMedCAS Google Scholar
Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABAB receptor function. Science 283(5398):74–77 PubMedCAS Google Scholar
Nelson G, Chandrashekar J, Hoon MA et al (2002) An amino-acid taste receptor. Nature 416(6877):199–202 PubMedCAS Google Scholar
Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390 PubMedCAS Google Scholar
Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12(35):4591–4600 PubMedCAS Google Scholar
Cvejic S, Devi LA (1997) Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem 272(43):26959–26964 PubMedCAS Google Scholar
Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399(6737):697–700 PubMedCAS Google Scholar
He L, Fong J, von Zastrow M, Whistler JL (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108(2):271–282 PubMedCAS Google Scholar
Gomes I, Jordan BA, Gupta A, Rios C, Trapaidze N, Devi LA (2001) G protein-coupled receptor dimerization: implications in modulating receptor function. J Mol Med 79(5–6):226–242 PubMedCAS Google Scholar
Rios CD, Jordan BA, Gomes I, Devi LA (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 92(2–3):71–87 PubMedCAS Google Scholar
Gomes I, Filipovska J, Jordan BA, Devi LA (2002) Oligomerization of opioid receptors. Methods 27(4):358–365 PubMedCAS Google Scholar
Ramsay D, Kellett E, McVey M, Rees S, Milligan G (2002) Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem J 365(pt 2):429–440 PubMedCAS Google Scholar
Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA 101(14):5135–5139 PubMedCAS Google Scholar
Wang D, Sun X, Bohn LM, Sadee W (2005) Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol 67(6):2173–2184 PubMedCAS Google Scholar
Filizola M, Laakkonen L, Loew GH (1999) 3D modeling, ligand binding and activation studies of the cloned mouse delta, mu; and kappa opioid receptors. Protein Eng 12(11):927–942 PubMedCAS Google Scholar
Filizola M, Villar HO, Loew GH (2001) Molecular determinants of nonspecific recognition of delta, mu, and kappa opioid receptors. Bioorg Med Chem 9(1):69–76 PubMedCAS Google Scholar
Filizola M, Olmea O, Weinstein H (2002) Prediction of heterodimerization interfaces of G-protein-coupled receptors with a new subtractive correlated mutation method. Protein Eng 15(11):881–885 PubMedCAS Google Scholar
Filizola M, Weinstein H (2002) Structural models for dimerization of G-protein-coupled receptors: the opioid receptor homodimers. Biopolymers 66(5):317–325 PubMedCAS Google Scholar
He L, Whistler JL (2007) The biochemical analysis of methadone modulation on morphine-induced tolerance and dependence in the rat brain. Pharmacology 79(4):193–202 PubMedCAS Google Scholar
Jiang Q, Takemori AE, Sultana M et al (1991) Differential antagonism of opioid delta antinociception by [D-Ala2, Leu5, Cys6]enkephalin and naltrindole 5′-isothiocyanate: evidence for delta receptor subtypes. J Pharmacol Exp Ther 257(3):1069–1075 PubMedCAS Google Scholar
Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa 1 and kappa 2 opioid receptors. Proc Natl Acad Sci USA 85(11):4061–4065 PubMedCAS Google Scholar
Bhushan RG, Sharma SK, Xie Z, Daniels DJ, Portoghese PS (2004) A bivalent ligand (KDN-21) reveals spinal delta and kappa opioid receptors are organized as heterodimers that give rise to delta(1) and kappa(2) phenotypes. Selective targeting of delta-kappa heterodimers. J Med Chem 47(12):2969–2972 PubMedCAS Google Scholar
Townsend DT, Portoghese PS, Brown DR (2004) Characterization of specific opioid binding sites in neural membranes from the myenteric plexus of porcine small intestine. J Pharmacol Exp Ther 308(1):385–93 PubMed Google Scholar
Xie Z, Bhushan RG, Daniels DJ, Portoghese PS (2005) Interaction of bivalent ligand KDN21 with heterodimeric delta-kappa opioid receptors in human embryonic kidney 293 cells. Mol Pharmacol 68(4):1079–1086 PubMedCAS Google Scholar
Vaught JL, Takemori AE (1979) A further characterization of the differential effects of leucine enkephalin, methionine enkephalin and their analogs on morphine-induced analgesia. J Pharmacol Exp Ther 211(2):280–283 PubMedCAS Google Scholar
Vaught JL, Takemori AE (1979) Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence. J Pharmacol Exp Ther 208(1):86–90 PubMedCAS Google Scholar
Rothman RB, Bowen WD, Herkenham M, Jacobson AE, Rice KC, Pert CB (1985) A quantitative study of [3H]D-Ala2-D-Leu5-enkephalin binding to rat brain membranes. Evidence that oxymorphone is a noncompetitive inhibitor of the lower affinity delta-binding site. Mol Pharmacol 27(3):399–409 PubMedCAS Google Scholar
Rothman RB, Long JB, Bykov V, Jacobson AE, Rice KC, Holaday JW (1988) beta-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence. J Pharmacol Exp Ther 247(2):405–416 PubMedCAS Google Scholar
Rutherford JM, Wang J, Xu H et al (2008) Evidence for a mu-delta opioid receptor complex in CHO cells co-expressing mu and delta opioid peptide receptors. Peptides 29(8):1424–1431 PubMedCAS Google Scholar
Bowen WD, Gentleman S, Herkenham M, Pert CB (1981) Interconverting mu and delta forms of the opiate receptor in rat striatal patches. Proc Natl Acad Sci USA 78(8):4818–4822 PubMedCAS Google Scholar
D’Amato R, Holaday JW (1984) Multiple opioid receptors in endotoxic shock: evidence for delta involvement and mu-delta interactions in vivo. Proc Natl Acad Sci USA 81(9):2898–2901 PubMed Google Scholar
Tortella FC, Robles L, Holaday JW (1985) The anticonvulsant effects of DADLE are primarily mediated by activation of delta opioid receptors: interactions between delta and mu receptor antagonists. Life Sci 37(6):497–503 PubMedCAS Google Scholar
Holaday JW, Tortella FC, Maneckjee R, Long JB (1986) In vivo interactions among opiate receptor agonists and antagonists. NIDA Res Monogr 71:173–188 PubMedCAS Google Scholar
Schoffelmeer AN, Yao YH, Simon EJ (1990) Cross-linking of 125I-beta-endorphin to rat striatal mu- and delta-opioid receptors under physiological conditions: evidence for an opioid receptor complex. Prog Clin Biol Res 328:105–108 PubMedCAS Google Scholar
Garzon J, Juarros JL, Castro MA, Sanchez-Blazquez P (1995) Antibodies to the cloned mu-opioid receptor detect various molecular weight forms in areas of mouse brain. Mol Pharmacol 47(4):738–744 PubMedCAS Google Scholar
Traynor JR, Elliott J (1993) Delta-opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol Sci 14(3):84–86 PubMedCAS Google Scholar
Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI (1992) Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. J Pharmacol Exp Ther 263(1):147–152 PubMedCAS Google Scholar
Abdelhamid EE, Takemori AE (1991) Characteristics of mu and delta opioid binding sites in striatal slices of morphine-tolerant and -dependent mice. Eur J Pharmacol 198(2–3):157–163 PubMedCAS Google Scholar
Zhu Y, King MA, Schuller AG et al (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24(1):243–252 PubMedCAS Google Scholar
Abul-Husn NS, Sutak M, Milne B, Jhamandas K (2007) Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of mu- and delta-opioid receptor antagonists. Br J Pharmacol 151(6):877–887 PubMedCAS Google Scholar
Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20(22):RC110 PubMedCAS Google Scholar
George SR, Fan T, Xie Z et al (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275(34):26128–26135 PubMedCAS Google Scholar
Snook LA, Milligan G, Kieffer BL, Massotte D (2006) Mu-delta opioid receptor functional interaction: insight using receptor-G protein fusions. J Pharmacol Exp Ther 318(2):683–690 PubMedCAS Google Scholar
Fan T, Varghese G, Nguyen T, Tse R, O’Dowd BF, George SR (2005) A role for the distal carboxyl tails in generating the novel pharmacology and G protein activation profile of mu and delta opioid receptor hetero-oligomers. J Biol Chem 280(46):38478–38488 PubMedCAS Google Scholar
Rozenfeld R, Devi LA (2007) Receptor heterodimerization leads to a switch in signaling: beta-arrestin2-mediated ERK activation by mu-delta opioid receptor heterodimers. FASEB J 21(10):2455–2465 PubMedCAS Google Scholar
Walwyn W, John S, Maga M, Evans CJ, Hales TG (2009) Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca2+ channels in dorsal root ganglion neurons. Mol Pharmacol 76(1):134–143 PubMedCAS Google Scholar
Charles AC, Mostovskaya N, Asas K, Evans CJ, Dankovich ML, Hales TG (2003) Coexpression of delta-opioid receptors with micro receptors in GH3 cells changes the functional response to micro agonists from inhibitory to excitatory. Mol Pharmacol 63(1):89–95 PubMedCAS Google Scholar
Hasbi A, Nguyen T, Fan T et al (2007) Trafficking of preassembled opioid mu-delta heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Biochemistry 46(45):12997–13009 PubMedCAS Google Scholar
Law PY, Erickson-Herbrandson LJ, Zha QQ et al (2005) Heterodimerization of mu- and delta-opioid receptors occurs at the cell surface only and requires receptor-G protein interactions. J Biol Chem 280(12):11152–11164 PubMedCAS Google Scholar
Decaillot FM, Rozenfeld R, Gupta A, Devi LA (2008) Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc Natl Acad Sci USA 105(41):16045–16050 PubMedCAS Google Scholar
Drasner K, Fields HL (1988) Synergy between the antinociceptive effects of intrathecal clonidine and systemic morphine in the rat. Pain 32(3):309–312 PubMedCAS Google Scholar
Ossipov MH, Lopez Y, Bian D, Nichols ML, Porreca F (1997) Synergistic antinociceptive interactions of morphine and clonidine in rats with nerve-ligation injury. Anesthesiology 86(1):196–204 PubMedCAS Google Scholar
Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GLP (1997) The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for spinal adrenergic-opioid synergy. J Neurosci 17(18):7157–7165 PubMedCAS Google Scholar
Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA (2003) Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol 64(6):1317–1324 PubMedCAS Google Scholar
Vilardaga JP, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ (2008) Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat Chem Biol 4(2):126–131 PubMedCAS Google Scholar
Zhang YQ, Limbird LE (2004) Hetero-oligomers of alpha2A-adrenergic and mu-opioid receptors do not lead to transactivation of G-proteins or altered endocytosis profiles. Biochem Soc Trans 32(Pt 5):856–860 PubMedCAS Google Scholar
Manzanares J, Corchero J, Fuentes JA (1999) Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of delta(9)-tetrahydrocannabinol in rats. Brain Res 839(1):173–179 PubMedCAS Google Scholar
Cichewicz DL, Cox ML, Welch SP, Selley DE, Sim-Selley LJ (2004) Mu and delta opioid-stimulated [35S]GTP gamma S binding in brain and spinal cord of polyarthritic rats. Eur J Pharmacol 504(1–2):33–38 PubMedCAS Google Scholar
Ledent C, Valverde O, Cossu G et al (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283(5400):401–404 PubMedCAS Google Scholar
Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci 22(3):1146–1154 PubMedCAS Google Scholar
Rodriguez JJ, Mackie K, Pickel VM (2001) Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J Neurosci 21(3):823–833 PubMedCAS Google Scholar
Salio C, Fischer J, Franzoni MF, Mackie K, Kaneko T, Conrath M (2001) CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neuroreport 12(17):3689–3692 PubMedCAS Google Scholar
Pickel VM, Chan J, Kash TL, Rodriguez JJ, MacKie K (2004) Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience 127(1):101–112 PubMedCAS Google Scholar
Rios C, Gomes I, Devi LA (2006) mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148(4):387–395 PubMedCAS Google Scholar
Hojo M, Sudo Y, Ando Y et al (2008) mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. J Pharmacol Sci 108(3):308–319 PubMedCAS Google Scholar
Becker A, Grecksch G, Kraus J et al (2001) Loss of locomotor sensitisation in response to morphine in D1 receptor deficient mice. Naunyn Schmiedebergs Arch Pharmacol 363(5):562–568 PubMedCAS Google Scholar
Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O’Dowd BF (2008) Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells. Eur J Pharmacol 581(3):235–243 PubMedCAS Google Scholar
Calo G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 129(7):1261–1283 PubMedCAS Google Scholar
Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53(3):381–415 PubMedCAS Google Scholar
Grisel JE, Mogil JS, Belknap JK, Grandy DK (1996) Orphanin FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. Neuroreport 7(13):2125–2129 PubMedCAS Google Scholar
Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK, Grandy DK (1996) Orphanin FQ is a functional anti-opioid peptide. Neuroscience 75(2):333–337 PubMedCAS Google Scholar
Calo G, Rizzi A, Marzola G et al (1998) Pharmacological characterization of the nociceptin receptor mediating hyperalgesia in the mouse tail withdrawal assay. Br J Pharmacol 125(2):373–378 PubMedCAS Google Scholar
Wang HL, Hsu CY, Huang PC et al (2005) Heterodimerization of opioid receptor-like 1 and mu-opioid receptors impairs the potency of micro receptor agonist. J Neurochem 92(6):1285–1294 PubMedCAS Google Scholar
Evans RM, You H, Hameed S et al (2010) Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation. J Biol Chem 285(2):1032–1040 PubMedCAS Google Scholar
Pan YX, Bolan E, Pasternak GW (2002) Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. Biochem Biophys Res Commun 297(3):659–663 PubMedCAS Google Scholar
Aicher SA, Punnoose A, Goldberg A (2000) mu-Opioid receptors often colocalize with the substance P receptor (NK1) in the trigeminal dorsal horn. J Neurosci 20(11):4345–4354 PubMedCAS Google Scholar
Aicher SA, Sharma S, Cheng PY, Liu-Chen LY, Pickel VM (2000) Dual ultrastructural localization of mu-opiate receptors and substance p in the dorsal horn. Synapse 36(1):12–20 PubMedCAS Google Scholar
Murtra P, Sheasby AM, Hunt SP, De Felipe C (2000) Rewarding effects of opiates are absent in mice lacking the receptor for substance P. Nature 405(6783):180–183 PubMedCAS Google Scholar
Ripley TL, Gadd CA, De Felipe C, Hunt SP, Stephens DN (2002) Lack of self-administration and behavioural sensitisation to morphine, but not cocaine, in mice lacking NK1 receptors. Neuropharmacology 43(8):1258–1268 PubMedCAS Google Scholar
Pfeiffer M, Kirscht S, Stumm R et al (2003) Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem 278(51):51630–51637 PubMedCAS Google Scholar
Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S (2002) Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem 277(22):19762–19772 PubMedCAS Google Scholar
Pfeiffer M, Koch T, Schroder H et al (2001) Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A). J Biol Chem 276(17):14027–14036 PubMedCAS Google Scholar
Peterson PK, Molitor TW, Chao CC (1998) The opioid-cytokine connection. J Neuroimmunol 83(1–2):63–69 PubMedCAS Google Scholar
Chen C, Li J, Bot G, Szabo I, Rogers TJ, Liu-Chen LY (2004) Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483(2–3):175–186 PubMedCAS Google Scholar
Guo XH, Fairbanks CA, Stone LS, Loh HH (2003) DPDPE-UK14, 304 synergy is retained in mu opioid receptor knockout mice. Pain 104(1–2):209–217 PubMedCAS Google Scholar
Milner TA, Drake CT, Aicher SA (2002) C1 adrenergic neurons are contacted by presynaptic profiles containing DELTA-opioid receptor immunoreactivity. Neuroscience 110(4):691–701 PubMedCAS Google Scholar
Robertson B, Schulte G, Elde R, Grant G (1999) Effects of sciatic nerve injuries on delta-opioid receptor and substance P immunoreactivities in the superficial dorsal horn of the rat. Eur J Pain 3(2):115–129 PubMedCAS Google Scholar
Stone LS, Broberger C, Vulchanova L et al (1998) Differential distribution of alpha2A and alpha2C adrenergic receptor immunoreactivity in the rat spinal cord. J Neurosci 18(15):5928–5937 PubMedCAS Google Scholar
Rios C, Gomes I, Devi LA (2004) Interactions between delta opioid receptors and alpha-adrenoceptors. Clin Exp Pharmacol Physiol 31(11):833–836 PubMedCAS Google Scholar
Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 98(1):343–348 PubMedCAS Google Scholar
Grimm MC, Ben-Baruch A, Taub DD et al (1998) Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med 188(2):317–325 PubMedCAS Google Scholar
Parenty G, Appelbe S, Milligan G (2008) CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2-DOP receptor hetero-dimer. Biochem J 412:245–256 PubMedCAS Google Scholar
Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106(5):619–632 PubMedCAS Google Scholar
Lembo PM, Grazzini E, Groblewski T et al (2002) Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 5(3):201–209 PubMedCAS Google Scholar
Grazzini E, Puma C, Roy MO et al (2004) Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc Natl Acad Sci USA 101(18):7175–7180 PubMedCAS Google Scholar
Breit A, Gagnidze K, Devi LA, Lagace M, Bouvier M (2006) Simultaneous activation of the delta opioid receptor (deltaOR)/sensory neuron-specific receptor-4 (SNSR-4) hetero-oligomer by the mixed bivalent agonist bovine adrenal medulla peptide 22 activates SNSR-4 but inhibits deltaOR signaling. Mol Pharmacol 70(2):686–696 PubMedCAS Google Scholar
Szabo I, Wetzel MA, Zhang N et al (2003) Selective inactivation of CCR5 and decreased infectivity of R5 HIV-1 strains mediated by opioid-induced heterologous desensitization. J Leukoc Biol 74(6):1074–1082 PubMedCAS Google Scholar
Pello OM, Martinez-Munoz L, Parrillas V et al (2008) Ligand stabilization of CXCR4/delta-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol 38(2):537–549 PubMedCAS Google Scholar
Tai KK, Jin WQ, Chan TK, Wong TM (1991) Characterization of [3H]U69593 binding sites in the rat heart by receptor binding assays. J Mol Cell Cardiol 23(11):1297–1302 PubMedCAS Google Scholar
Ventura C, Bastagli L, Bernardi P, Caldarera CM, Guarnieri C (1989) Opioid receptors in rat cardiac sarcolemma: effect of phenylephrine and isoproterenol. Biochim Biophys Acta 987(1):69–74 PubMedCAS Google Scholar
Daniels DJ, Kulkarni A, Xie Z, Bhushan RG, Portoghese PS (2005) A bivalent ligand (KDAN-18) containing delta-antagonist and kappa-agonist pharmacophores bridges delta2 and kapp a1 opioid receptor phenotypes. J Med Chem 48(6):1713–1716 PubMedCAS Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26 PubMedCAS Google Scholar
Waldhoer M, Fong J, Jones RM et al (2005) A heterodimer-selective agonist shows in vivo relevance of G-protein-coupled receptor dimers. Proc Natl Acad Sci USA 102(25):9050–9055 PubMedCAS Google Scholar
Matthes HW, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383(6603):819–823 PubMedCAS Google Scholar
Nitsche JF, Schuller AG, King MA, Zengh M, Pasternak GW, Pintar JE (2002) Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci 22(24):10906–10913 PubMedCAS Google Scholar
Guan JS, Xu ZZ, Gao H et al (2005) Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell 122(4):619–631 PubMedCAS Google Scholar
Cahill CM, Morinville A, Lee MC, Vincent JP, Collier B, Beaudet A (2001) Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci 21(19):7598–7607 PubMedCAS Google Scholar
Morinville A, Cahill CM, Esdaile MJ et al (2003) Regulation of delta-opioid receptor trafficking via mu-opioid receptor stimulation: evidence from mu-opioid receptor knock-out mice. J Neurosci 23(12):4888–4898 PubMedCAS Google Scholar
Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408(6813):720–723 PubMedCAS Google Scholar
Gupta A, Mulder J, Gomes I, Rozenfeld R, Bushlin I, Ong E, Lim M, Maillet, E, Juneck M, Cahill CM, Harkany T, Devi LA (2010) Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci.Signal. 3:ra54 Google Scholar