Directionally Selective Motion Detection by Insect Neurons (original) (raw)
Adelson EH, Bergen JR (1985) Spatio-temporal energy models for the perception of motion. J Opt Soc Am 2:284–299. CAS Google Scholar
Amthor FR, Oyster CW, Takahashi ES (1984) Morphology of on-off direction-selective ganglion cells in the rabbit retina. Brain Res 298:187–190. PubMedCAS Google Scholar
Ariel M, Daw N (1982) Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells. J Physiol 324:161–185. PubMedCAS Google Scholar
Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178:477–504. PubMedCAS Google Scholar
Bishop LG, Keehn DG (1966) Two types of neurons sensitive to motion in the optic lobe of the fly. Nature (London) 212:1374–1376. CAS Google Scholar
Bishop LG, Keehn DG, McCann G (1967) Neural correlates of the optomotor response in the fly. Kybernetik 3:288–295. PubMedCAS Google Scholar
Bishop LG, Keehn DG, McCann GD (1968) Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J Neurophysiol 31:509–525. PubMedCAS Google Scholar
Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybernet 56:209–215. Google Scholar
Braitenberg V (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7:235–242. PubMedCAS Google Scholar
Braitenberg V, Strausfeld NJ (1973) Principles of the mosaic organization in the visual system’s neuropil of Musca domestica. In: Handbook of sensory physiology, vol VII 3A. Jung R (ed) Springer, Berlin Heidelberg, New York, pp 631–659. Google Scholar
Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybernet 24:85–101. Google Scholar
Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp. 561–621. Google Scholar
Bülthoff H, Götz KG (1979) Analogous motion illusion in man and fly. Nature 278:636–638. PubMed Google Scholar
Bülthoff H, Schmid A (1983) Neuropharmakologische Untersuchungen bewegungsempfindlicher Interneurone in der Lobula Platte der Fliege. Verh Dtsch Zool Ges, Gustav Fischer, Stuttgart, p 273. Google Scholar
Calvin WH, Graubard K (1979) Styles of neuronal computation. In: Schmitt FO, Worden FG (eds) The neurosciences, 4th study program. MIT, Cambridge, pp 513–524. Google Scholar
Collett T, Blest DA (1966) Binocular, directionally-selective neurons, possibly involved in the optomotor response of insects. Nature (London) 212:1330–1333. CAS Google Scholar
Collett T, Harkness LIK (1982) Depth vision in animals. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT, Cambridge London, pp 111–176. Google Scholar
Collett T, King AJ (1975) Vision during flight. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 437–466. Google Scholar
de Ruyter van Steveninck RR, Zaagman WH, Mastebroek HAK (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala. Biol Cybernet 54:223–236. Google Scholar
DeVoe RD (1980) Movement sensitivities of cells in the fly’s medulla. J Comp Physiol A 138:93–119. Google Scholar
DeVoe RD, Ockleford EM (1976) Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. Biol Cybernet 23:13–24. CAS Google Scholar
DeVoe RD, Kaiser W, Ohm J, Stone LS (1982) Horizontal movement detectors of honeybees: directionally-selective visual neurons in the lobula and brain. J Comp Physiol A 147:155–170. Google Scholar
Doorn AJ van, Koenderink JJ (1976) A directionally sensitive network. Biol Cybernet 2:161–170. Google Scholar
Dvorak DR, Bishop LG, Eckert HE (1975) On the identification of movement detectors in the optic lobe. J Comp Physiol 100:5–23. Google Scholar
Dvorak D, Srinivasan MV, French AS (1980) The contrast sensitivity of fly movement-detecting neurons. Vision Res 20:397–407. PubMedCAS Google Scholar
Eckert H (1971) Die Spektralempfindlichkeit des Komplexauges von Musca. Kybernetik 9:145–156. PubMedCAS Google Scholar
Eckert H (1980) Functional properties of the H1-neuron in the third optic ganglion of the blowfly, Phaenicia. J Comp Physiol A 135:29–39. Google Scholar
Eckert H (1982) The vertical-horizontal neuron (VH) in the lobula plate of the blowfly, Phaenicia. J Comp Physiol A 149:195–205. Google Scholar
Egelhaaf H (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurons. Biol Cybernet 52:195–209. Google Scholar
Emerson RC, Gerstein GL (1977) Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. J Neurophysiol 40:136–155. PubMedCAS Google Scholar
Emerson RC, Citron MC, Vaughn WJ, Klein SA (1987) Nonlinear directionally selective subunits in complex cells of cat striate cortex. J Neurophysiol 58:33–65. PubMedCAS Google Scholar
Erikson ES (1982) Neural responses to depth-motion stimulation in a horizontally sensitive interneuron in the optic lobe of the blowfly. J Insect Physiol 28:631–639. Google Scholar
Exner S (1875a) Experimentelle Untersuchung der einfachsten psychischen Processe. Pflüger’s Arch Physiol 11:403–432. Google Scholar
Exner S (1875b) Über das Sehen von Bewegungen und die Theorie des zusammengesetzten Auges. Sitzungsber Akad Wiss Wien Abt III 72:156–190. Google Scholar
Exner S (1891) Die Physiologie der facettierten Augen von Krebsen und Insekten. Deuticke, Leipzig. Google Scholar
Exner S (1894) Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen, 1. Teil. Deuticke, Leipzig, pp 37–140. Google Scholar
Fennema CL, Thompson WB (1979) Velocity determination in scenes containing several moving objects. Comput Graph Image Proc 9:301–315. Google Scholar
Fermi G, Reichardt W (1963) Optomotorische Reaktion der Fliege Musca domestica. Kybernetik 2:15–28. PubMedCAS Google Scholar
Foster DH (1971 ) A model of the human visual system in its response to certain classes of moving stimuli. Kybernetik 8:69–84. PubMedCAS Google Scholar
Franceschini N (1972) Pupil and pseudopupil in the compound eye of Drosophila. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 75–82. Google Scholar
Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 98–125. Google Scholar
Franceschini N (1983) In vivo microspectrofluorimetry of visual pigments. In: Cosens DJ (ed) The biology of photoreceptors. Univ Press, Cambridge, pp 53–85. Google Scholar
Franceschini N (1984) Chromatic organization and sexual dimorphism of the fly retinal mosaic. In: Borsellino A, Cervetto L (eds) Photoreceptors. Plenum, New York, pp 319–350. Google Scholar
Franceschini N (1985) Early processing of colour and motion in a mosaic visual system. Neurosci Res Suppl 2:17–49. Google Scholar
Franceschini N, Blanes C, Oufar L (1985) Appareil de mesure passif et sans contact de la vitesse d’un objet. Patent ANVAR No 51549, Paris. Google Scholar
Franceschini N, Riehle A, Le Nestour A (1986) Properties of the integrated circuit mediating directional selectivity in a movement sensitive neuron. Soc Neurosci Abstr 12:859. Google Scholar
Gibson JJ (1958) Visually controlled locomotion and visual orientation in animals. Br J Psychol 49:182–194. PubMedCAS Google Scholar
Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92. PubMed Google Scholar
Götz KG (1965) Behavioral analysis of the visual system of the fruitfly Drosophila. Proc Symp Information processing in sight sensory systems, Caltech, Pasadena, pp 85–100. Google Scholar
Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4:199–208. PubMed Google Scholar
Götz KG (1972) Principles of optomotor reactions in insects. Bibl Ophthalmol 82:251–259. PubMed Google Scholar
Grind WA van de, Koenderink JJ, Doom AJ van (1986) The distribution of human motion detector properties in the monocular visual field. Vis Res 26:797–810. PubMed Google Scholar
Grzywacz NM, Koch C (1987) Functional properties of models for direction selectivity in the retina. Synapse 1:417–434. PubMedCAS Google Scholar
Hardie RC (1985) Functional organization of the fly retina. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York Tokyo, pp 1–79. Google Scholar
Hardie RC (1986) The photoreceptor array of the dipteran retina. Trends Neurosci 9:419–423. Google Scholar
Hassenstein B (1951) Ommatidienraster und afferente Bewegungsintegration. Z Vergl Physiol 33:301–326. Google Scholar
Hassenstein B (1958) Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern. Z Vergl Physiol 40:556–592. Google Scholar
Hassenstein B, Reichardt W (1956) Systemtheorische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b:513–524. Google Scholar
Hateren JH van (1987) Neural superposition and oscillations in the eye of the blowfly. J Comp Physiol A 161:849–855. Google Scholar
Hausen K (1976) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z Naturforsch 31c:629–633. Google Scholar
Hausen K (1981) Monokulare und binokulare Bewegungsauswertung in der Lobula-Platte der Fliege. Verh Dtsch Zool Ges 74:49–70. Google Scholar
Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behavior. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 523–559. Google Scholar
Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol A 117:127–162. Google Scholar
Helmholtz H von (1867) Handbuch der physiologischen Optik. Voss, Leipzig. Google Scholar
Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol A 149:179–193. Google Scholar
Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J Comp Physiol A 149:163–177. Google Scholar
Hertel H, Maronde U (1987) The physiology and morphology of centrally projecting visual interneurons in the honeybee brain. J Exp Biol 133:301–315. Google Scholar
Hertel H, Schaefer S, Maronde U (1987) The physiology and morphology of visual commissures in the honeybee brain. J Exp Biol 133:283–300. Google Scholar
Hildreth EC, Koch C (1987) The analysis of visual motion: from computational theory to neuronal mechanisms. Annu Rev Neurosci 10:477–533. PubMedCAS Google Scholar
Horridge GA (1986) A theory of insect vision: velocity parallax. Proc R Soc London Ser B 229:13–27. Google Scholar
Horridge GA, Scholes JH, Shaw S, Tunstall J (1965) Extracellular recordings from single neurons in the optic lobe and brain of the locust. In: Treherne JE, Beament JWL (eds) The physiology of the insect central nervous system. Academic Press, New York London, pp 165–202. Google Scholar
Hubel D, Wiesel T (1959) Receptive fields of single neurons in the cat’s striate cortex. J Physiol 148:574–591. PubMedCAS Google Scholar
Jensen RJ, DeVoe RD (1983) Comparisons of directionally selective with other ganglion cells of the turtle retina: intracellular recording and staining. J Comp Neurol 217:271–287. PubMedCAS Google Scholar
Kirschfeld K (1969) Optics of the compound eye. In: Reichardt W (ed) Processing of optical data by organisms and by machines. Academic Press, New York London, pp 144–166. Google Scholar
Kirschfeld K (1972) The visual system of Musca: studies on optics, structure and function. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 61–74. Google Scholar
Kirschfeld K (1973) Das neurale Superpositionsauge. Fortschr Zool 21:229–257. PubMedCAS Google Scholar
Kirschfeld K, Franceschini N (1968) Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5:47–52. PubMedCAS Google Scholar
Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22. PubMedCAS Google Scholar
Kirschfeld K, Lutz B (1974) Lateral inhibition in the compound eye of the fly, Musca. Z Naturforsch 29c:95–97. Google Scholar
Koch C, Poggio T, Torre V (1983) Nonlinear interaction in a dendritic tree: localization, timing and role in information processing. Proc Natl Acad Sci USA 80:2799–2802. PubMedCAS Google Scholar
Lenting BP (1985) Functional characteristics of a wide-field movement processing neuron in the blowfly visual system. Thesis, Groningen. Google Scholar
Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Eng NY 47:1940–1951. Google Scholar
Levick WR, Barlow HB, Hill RM (1969) Retinal mechanisms for the perception of movement in rabbits. In: The physiological basis for form discrimination. NIH, pp 97-105. Google Scholar
Lillywhite PG, Dvorak DR (1981) Responses to single photons in a fly optomotor neuron. Vision Res 21:279–290. PubMedCAS Google Scholar
Limb JO, Murphy JA (1975) Estimating the velocity of moving images in television signals. Comp Graph Im Process 4:311–327. Google Scholar
Maddess T (1986) Afterimage-like effects in the motion-sensitive neuron H1. Proc R Soc London Ser B 228:433–459. CAS Google Scholar
Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc R Soc London Ser B 225:251–275. Google Scholar
Marchiafava PL (1979) The response of retinal ganglion cells to stationary and moving visual stimuli. Vision Res 19:1203–1211. PubMedCAS Google Scholar
Marr D (1982) Vision. Freeman, San Francisco. Google Scholar
Marr D, Poggio T (1977) From understanding computation to understanding neural circuitry. Neurosci Res Progr Bull 15:470–488. Google Scholar
Marr D, Ullman S (1981) Directional selectivity and its use in early visual processing. Proc R Soc London Ser B 211:151–180. CAS Google Scholar
Masland RH, Tauchi M (1986) The cholinergic amacrine cell. Trends Neurosci 9:218–223. CAS Google Scholar
Mastebroek HAK, Zaagman WH, Lenting BPM (1980) Movement detection: performance of a wide-field element in the visual system of the blowfly. Vision Res 20:467–474. PubMedCAS Google Scholar
Mastebroek HAK, Zaagman WH, Lenting BPM (1982) Memory-like effects in fly vision: spatiotemporal interactions in a wide-field neuron. Biol Cybernet 43:147–155. Google Scholar
McCann GD (1973) The fundamental mechanism of motion detection in the insect visual system. Kybernetik 12:64–73. PubMedCAS Google Scholar
McCann GD, Arnett DW (1972) Spectral and polarization sensitivity of the dipteran visual system. J Gen Physiol 59:534–558. PubMedCAS Google Scholar
McCann GD, Dill JC (1969) Fundamental properties of intensity, form and motion perception in the visual nervous system of Calliphora phaenicia and Musca domestica. J Gen Physiol 53:385–413. PubMedCAS Google Scholar
McCann GD, Foster SF (1971) Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8:193–203. PubMedCAS Google Scholar
McCann GD, MacGinitie GF (1965) Optomotor response studies of insect vision. Proc R Soc London Ser B 163:369–401. CAS Google Scholar
Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol 55:1308–1327. PubMedCAS Google Scholar
Miller RF (1979) The neuronal basis of ganglion cell receptive field organization and the physiology of amacrine cells. In: Schmitt FO and Worden FG (eds) The Neurosciences, 4 study program. MIT, Cambridge, pp 247–245. Google Scholar
Mimura K (1971) Movement discrimination by the visual system of flies. Z Vergl Physiol 73:105–138. Google Scholar
Mimura K (1972) Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J Comp Physiol 80:409–437. Google Scholar
Montero VM, Brugge JF (1969) Direction of movement as the significant stimulus parameter for some lateral geniculate cells in the rat. Vision Res 9:71–88. PubMedCAS Google Scholar
Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol 283:53–77. PubMedCAS Google Scholar
Nakayama K (1985) Biological image motion processing: a review. Vision Res 25:625–660. PubMedCAS Google Scholar
Nicoll RA (1982) Transmitters can say more than just “yes” or “no”. Trends Neurosci 5:369–374. CAS Google Scholar
O’Shea M, Rowell CHF (1977) Complex neural integration and identified interneurons in the locust brain. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum, New York, pp 307–328. Google Scholar
Osorio D (1986) Directionally selective cells in the locust medulla. J Comp Physiol A 159:841–847. PubMedCAS Google Scholar
Pick B, Buchner E (1979) Visual movement detection under light-and dark-adaptation in the fly, Musca domestica. J Comp Physiol 134:45–54. Google Scholar
Pierantoni R (1976) A look into the cock-pit of the fly. The architecture of the lobula plate. Cell Tissue Res 171:101–122. PubMedCAS Google Scholar
Poggio T, Reichardt W (1976) Visual control of orientation behavior in the fly. Part II. Towards the underlying neural interactions. Q Rev Biophys 9:377–438. PubMedCAS Google Scholar
Poggio T, Reichardt W, Hausen K (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften 68:443–446. Google Scholar
Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems. Z Naturforsch 12b:448–457. Google Scholar
Reichardt W (1961) Autocorrelation: a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communications. John Wiley & Sons, New York, pp 303–317. Google Scholar
Reichardt W (1969) Movement perception in insects. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic Press, New York London, pp 465–493. Google Scholar
Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161:533–547. PubMedCAS Google Scholar
Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Pt 1. A quantitative analysis. Q Rev Biophys 9:311–375. PubMedCAS Google Scholar
Riehle A, Franceschini N (1982) Response of a directionally-selective, movement detecting neuron under precise stimulation of two identified photoreceptors cells. Neurosci Lett Suppl 10:5411–5412. Google Scholar
Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 54:390–394. PubMedCAS Google Scholar
Rind FC (1983) A directionally sensitive motion detecting neuron in the brain of a moth. J Exp Biol 102:253–271. Google Scholar
Rind FC (1987) Non-directional movement sensitive neuron of the locust optic lobe. J Comp Physiol A 161:477–494. Google Scholar
Santen JPH van, Sperling G (1984) Temporal covariance model of human motion perception. J Optic Soc Am A 1:451–473. Google Scholar
Santen JPH van, Sperling G (1985) Elaborated Reichardt detectors J Opt Soc Am A 2:300–321. PubMed Google Scholar
Schouten JF (1967) Subjective stroboscopy and a model of visual movement detectors. In: Wathen-Dunn W (ed) Models for the perception of speech and visual form. MIT, Cambridge, pp 44–55. Google Scholar
Schuling FH, Mastebroek HAK (1984) Modeling of adaptive image processing strategies in fly vision. Proc Int AMSE Conf Modelling and simulation, Athens, June 27–29, vol 4.2, pp 117–140. Google Scholar
Shaw S (1984) Early visual processing in insects. J Exp Biol 112:225–251. PubMedCAS Google Scholar
Solodovnikov VV (1965) Dynamique statistique des systèmes linéaires de commande automatique. Dunod, Paris. Google Scholar
Srinivasan MV (1983) The impulse response of a movement detecting neuron and its interpretation. Vision Res 23:659–663. PubMedCAS Google Scholar
Srinivasan MV, Dvorak DR (1980) Spatial processing of visual information in the movement-detecting pathway of the fly. J Comp Physiol 140:1–23. Google Scholar
Stavenga DG (1975) Optical qualities of the fly eye — an approach from the side of geometrical, physical and waveguide optics. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 126–144. Google Scholar
Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York. Google Scholar
Strausfeld NJ (1984) Functional neuroanatomy of the blowfly visual system. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 481–522. Google Scholar
Strausfeld NJ, Hausen K (1977) The resolution of neuronal assemblies after cobalt injection into neuropil. Proc R Soc London Ser B 199:463–476. Google Scholar
Strausfeld NJ, Nässel DR (1980) Neuroarchitecture of brain regions that subserve the compound eye of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 1–133. Google Scholar
Thorson J (1966) Small signal analysis of a visual reflex in the locust. II. Frequency dependence. Kybernetik 3:53–66. PubMedCAS Google Scholar
Torre V, Poggio T (1978) A synaptic mechanism possibly underlying directional selectivity to motion. Proc R Soc London Ser B 202:409–416. Google Scholar
Trujillo-Cenóz O (1972) The structural organization of the compound eye in insects. In: Fuortes MGF (ed) Handbook of sensory physiology, vol VII/2. Springer, Berlin Heidelberg New York, pp 5–62. Google Scholar
Ullman S (1981) Analysis of visual motion by biological and computer systems. Computer 14:57–69. Google Scholar
Ullman S (1986) Artificial intelligence and the brain: computational studies of the visual system. Annu Rev Neurosci 9:1–26. PubMedCAS Google Scholar
Umeda K, Tateda H (1985) Visual interneurons in the lobula complex of the fleshfly, Boettcherisca peregrina. J Comp Physiol A 157:831–836. PubMedCAS Google Scholar
Varju D (1977) Systemtheorie für Biologen und Mediziner. Springer, Berlin Heidelberg New York. Google Scholar
Vitanova L, Glezer V, Gauselman V (1985) On the mechanisms underlying appearance of responses to movement, directional selectivity and velocity tuning of the cat’s striate cortical neurons. Biol Cybernet 52:237–246. CAS Google Scholar
Watanabe S, Murakami M (1984) Synaptic mechanisms of directional selectivity in ganglion cells of frog retina as revealed by intracellular recordings. Jpn J Physiol 34:497–511. PubMedCAS Google Scholar
Waterman TH, Wiersma G, Bush BMH (1964) Afferent visual responses in the optic nerve of the crab Podophtalmus. J Cell Comp Physiol 63:135–155. CAS Google Scholar
Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 288–616. Google Scholar
Wehrhahn C (1984) Visual guidance of flies during flight. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon, Oxford pp 673–684. Google Scholar
Wertheimer M (1912) Experimentelle Studien über das Sehen von Bewegung. Z Psychol 61:161–265. Google Scholar
Wilcox M, Franceschini N (1984) Illumination induces dye incorporation in photoreceptor cells. Science 225:851–854. PubMedCAS Google Scholar
Wilson HR (1985) A model for direction selectivity in threshold motion perception. Biol Cybernet 51:213–222. CAS Google Scholar
Zaagman WH, Mastebroek HAK, Buyse T, Kuiper JW (1977) Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J Comp Physiol 116:39–50. Google Scholar
Zaagman WH, Mastebroek HAK, Kuiper JW (1978) On the correlation model: performance of a movement detecting neural element in the fly visual system. Biol Cybernet 31:163–168. CAS Google Scholar
Zaagman WH, Mastebroek HAK, de Ruyter van Steveninck R (1983) Adaptative strategies in fly vision: on their image-processing qualities. IEEE Trans Syst Manag Cybernet SMC 13:900–906. Google Scholar