Clostridium Botulinum C3 Exoenzyme and C3-Like Transferases (original) (raw)
Adam-Vizi V, Rösener S, Aktories K, Knight DE (1988) Botulinum toxin-induced ADP—ribosylation and inhibition of exocytosis are unrelated events. FEBS Lett 238: 277–280 ArticlePubMedCAS Google Scholar
Aepfelbacher M (1995) ADP—ribosylation of Rho enhances adhesion of U937 cells to fibronectin via the a5b1 integrin receptor. FEBS Lett 363: 78–80 ArticlePubMedCAS Google Scholar
Aepfelbacher M, Essler M, Huber E, Czech A, Weber PC (1996) Rho is a negative regulator of human monocyte spreading. J Immunol 157: 5070–5075 PubMedCAS Google Scholar
Aktories K, Frevert J (1987) ADP—ribosylation of a 21–24-kDa eukaiyotic protein(s) by C3, a novel hotulinum ADP—ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247: 363–368 PubMedCAS Google Scholar
Aktories K, Just I (1995) Monoglucosylation of low-molecular-mass GTP-binding Rho proteins by clostridial cytotoxins. Trends Cell Biol 5: 441–443 ArticlePubMedCAS Google Scholar
Aktories K, Wegner A (1989) ADP—ribosylation of actin by clostridial toxins. J Cell Biol 109: 1385–1387 ArticlePubMedCAS Google Scholar
Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP—ribosylates actin. Nature 322: 390–392 ArticlePubMedCAS Google Scholar
Aktories K, Weller U, Chhatwal GS (1987) Clostridium hotulinum type C produces a novel ADP—ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212: 109–113 Google Scholar
Aktories K, Just 1, Rosenthal W (1988a) Different types of ADP—ribose protein bonds formed by botulinum C2 toxin, botulinum ADP—ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun 156: 361–367 ArticlePubMedCAS Google Scholar
Aktories K, Rösener S, Blaschke U, Chhatwal GS (1988b) Botulinum ADPribosyltransferase C3. Purification of the enzyme and characterization of the ADP—ribosylation reaction in platelet membranes. Eur J Biochem 172: 445–450 Google Scholar
Aktories K, Braun U, Rösener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of hotulinum ADP—ribosyltransferase C3. Biochem Biophys Res Commun 158: 209–213 ArticlePubMedCAS Google Scholar
Alberts AS, Geneste O, Treisman R (1998) Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces II4 hyperacetylation. Cell 92: 475–487 ArticlePubMedCAS Google Scholar
Amano M, Mukai H, Ono Y, Chihara K, Matsui T. Hamajima Y, Okawa K, Iwamatsu A, Kaibuchi K (1996) Identification of a putative target for Rho as the serinethreonine kinase protein kinase N. Science 271: 648–650 CAS Google Scholar
Aullo P, Giry M, Olsnes S, Popoff MR, Kocks C, Boquet P (1993) A chimeric toxin to study the role of the 21-kDa GTP binding protein rho in the control of actin micro-filament assembly. EMBO J 12: 921–931 PubMedCAS Google Scholar
Balboa MA, Insel PA (1995) Nuclear phospholipase D in Madin-Darby canine kidney cells — guanosine 5’-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C. J Biol Chem 270: 29843–29847 ArticlePubMedCAS Google Scholar
Barbieri JT, Mende-Mueller M, Rappuoli R, Collier RJ (1989) Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD. Infect Immun 57: 3549–3554 PubMedCAS Google Scholar
Barry ST, Flinn HM, Humphries MJ, Critchley DR, Ridley AJ (1997) Requirement for Rho in integrin signalling. Cell Adhes Commun 4: 387–398 ArticlePubMedCAS Google Scholar
Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998) The N-terminal part of the enzyme component (C2I) of the binary Clostridium hotulinum C2 toxin interac s with the binding component C21I and functions as a carrier system for a Rho ADP—ribosylating C3-like fusion toxin. Infect Immun 66: 1364–1369 PubMedCAS Google Scholar
Bell CE, Eisenberg D (1996) Crystal structure of diphtheria toxin bound to nico’ inamide adenine dinucleotide. Biochemistry 35: 1137–1149 ArticlePubMedCAS Google Scholar
Beltman J, Erickson JR, Martin GA, Lyons JF, Cook SJ (1999) C3 toxin activates tie stress signaling pathways, JNK and p38, but antagonizes the activation of AP-1 in Rat-1 cells. J Biol Chem 274: 3772–3780 ArticlePubMedCAS Google Scholar
Böhmer J, Jung M, Sehr P, Fritz G, Popoff M, Just I, Aktories K (1996) Active-site mutation of the C3-like ADP—ribosyltransferase from Clostridium lirnosum — analysis of glutamic acid 174. Biochemistry 35: 282–289 ArticlePubMed Google Scholar
Bourmeyster N, Stasia M-J, Garin J, Gagnon J, Boquet P, Vignais PV (1992) Copw’ification of Rho protein and the Rho—GDP-dissociation inhibitor from bovine neutrophil cytosol. Effect of phosphoinositides on Rho ADP—ribosylation by the C3 exoenzyme of Clostridium botulinum. Biochemistry 31: 12863–12869 ArticlePubMedCAS Google Scholar
Braga VMM, Machesky LM, Hall A, Hotchin NA (1997) The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137: 1421–1431 ArticlePubMedCAS Google Scholar
Braun U, Hahermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22-kDa protein substrate of botulinum ADP—ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho-gene product. FEBS Lett 243: 70–76 ArticlePubMedCAS Google Scholar
Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL (1995) Ga,2 and Gal, stimulate Rho-dependent stress-fiber formation and focal adhesion assembly. J Biol Chem 270: 24631–24634 ArticlePubMedCAS Google Scholar
Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282: 1717–1721 ArticlePubMedCAS Google Scholar
Carroll SF, Collier RJ (1987) Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 262: 8707–8711 PubMedCAS Google Scholar
Carroll SF, McCloskey JA, Crain PF, Oppenheimer NJ, Marschner TM, Collier RJ (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: structure of the photoproduct at position 148. Proc Natl Acad Sci USA 82: 7237–7241 ArticlePubMedCAS Google Scholar
Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein Rho C is ADP—ribosylated by Clostridium botulinum, exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8: 1087–1092 PubMedCAS Google Scholar
Choe S, Bennett MJ, Fujii G, Curmi PMG, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357: 216–222 ArticlePubMedCAS Google Scholar
Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTPbinding protein Rho regulates a phosphatidylinositol-4-phosphate 5 kinase in mammalian cells. Cell 79: 507–513 ArticlePubMedCAS Google Scholar
Collard JG (1996) Signaling pathways regulated by Rho-like proteins: A possible role in tumor transformation and metastasis. Int J Oncol 8: 131–138 PubMedCAS Google Scholar
Collier RJ (1995) Three-dimensional structure of diphtheria toxin. In: Moss J, Iglewski B, Vaughan M, et al. Bacterial toxins and virulence factors in disease. Marcel Dekker, New York, pp 81–93 Google Scholar
Domenighini M, Rappuoli R (1996) Three conserved consensus sequences identify the NAD-binding site of ADP—ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Molecular Microbiology 21: 667–674 ArticlePubMedCAS Google Scholar
Domenighini M, Pizza M, Rappuoli R (1995) Bacterial ADP—ribosyltransferases. In: Moss J, Iglewski B, Vaughan M, et al. Bacterial toxins and virulence factors in disease. Marcel Dekker, Inc., New York, pp 59–80 Google Scholar
Drechsel DN, Hyman AA, Hall A, Glotzer M (1996) A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr Biol 7: 12–23 Article Google Scholar
Essler M,Amano M, Kruse H-J, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light-chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273: 21867–21874 Article Google Scholar
Fensome A, Whatmore J, Morgan C, Jones D, Cockcroft S (1998) ADP—ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. J Biol Chem 273: 13157–13164 ArticlePubMedCAS Google Scholar
Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387: 729–733 ArticlePubMedCAS Google Scholar
Frithz-Lindsten E, Du Y, Rosqvist R, Forsberg A (1997) Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type-II-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Molecular Microbiology 25: 1125–1139 ArticlePubMedCAS Google Scholar
Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS (1997) The small GTP-binding protein Rho links G protein-coupled receptors and Ga,2 to the serum response element and to cellular transformation. Proc Natl Acad Sci USA 94: 10098–10103 ArticlePubMedCAS Google Scholar
Fujii N, Oguma K, Yokosawa N, Kimura K, Tsuzuki K (1988) Characterization of bacteriophage nucleic acids obtained from Clostridium botulinurn types C and D. Appl Environ Microbiol 54: 69–73 PubMedCAS Google Scholar
Fujisawa K, Madaule P, Ishizaki T, Watanabe G, Bito H, Saito Y, Hall A, Narumiya S (1998) Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J Biol Chem 273: 18943–18949 ArticlePubMedCAS Google Scholar
Habermann B, Mohr C, Just I, Aktories K (1991) ADP—ribosylation and de-ADPribosylation of the Rho protein by Clostridium botulinum exoenzyme C3. Regulation by EDTA, guanine nucleotides and pH. Biochem Biophys Acta 1077: 253–258 Google Scholar
Hall A (1994) Small GIP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10:3 L-54 Google Scholar
Hammond SM, Jenco JM, Nakashima S, Cadwallader K, Gu Q, Cook S, Nozawa Y, Prestwich GD, Frohman MA, Morris AJ (1997) Characterization of two alternately spliced forms of phospholipase Dl. J Biol Chem 272: 3860–3868 ArticlePubMedCAS Google Scholar
Hardt W-D, Chen L-M, Schuebel KE, Bustelo XR, Gahin JE (1998) Styphirnuriurn encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 815–826 ArticlePubMedCAS Google Scholar
Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated rac uncap actin-filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82: 643–653 ArticlePubMedCAS Google Scholar
Hauser D, Gibert M, Eklund MW, Boquet P, Popoff MR (1993) Comparative analysis of C3 and botulinal neurotoxin genes and their environment in Clostridium botulinum types C and D. J Bacteriol 175: 7260–7268 PubMedCAS Google Scholar
Henning SW, Cantrell DA (1998) GTPases in antigen-receptor signalling. Curr Opin Immunol 10: 322–329 ArticlePubMedCAS Google Scholar
Henning SW, Galandrini R, Hall A, Cantrell DA (1997) The GTPase Rho has a critical regulatory role in thymus development. EMBO J 16: 2397–2407 ArticlePubMedCAS Google Scholar
Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Racl, and CDC42Hs regulate transcriptional activation by SRF. Cell 81: 1159–1170 ArticlePubMedCAS Google Scholar
Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T. Takai Y, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma-membrane association: possible involvement of phopshatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135: 37–51 CAS Google Scholar
Hol WGJ, Sixma TK, Merritt EA (1995) Structure and function of E. coli heat-labile enterotoxin and cholera toxin B pentamer. In: Moss J, lglewski B, Vaughan M, et al. Bacterial toxins and virulence factors in disease. Marcel Dekker, New York, pp 185–223 Google Scholar
Horiguchi Y, Inoue N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, Matsuda M (1997) Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress libers through deamidation of Gln-6.3 of the GTP-binding protein Rho. Proc Natl Acad Sci USA 94: 11623–11626 ArticlePubMedCAS Google Scholar
Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S, Kaibuchi K, Hakoshima T (1998) Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem 273: 9656–9666 ArticlePubMedCAS Google Scholar
Inoue S, Sugai M, Murooka Y, Paik S-Y, Hong Y-M, Ohgai H, Suginaka H (1991) Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus. Biochem Biophys Res Commun 174: 459–464 ArticlePubMedCAS Google Scholar
Jalink K, Van Corven EJ, Hengeveld T, Morii N, Narumiya S. Moolenaar WH (1994) Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cell rounding by ADP—ribosylation of the small GTP-binding pra.ein Rho. J Cell Biol 126: 801–810 CAS Google Scholar
Jung M, Just I, van Damme J, Vandekerckhove J, Aktories K (1993) NAD-binding site of the C3-like ADP—ribosyltransferase from Clostridium limosurn. J Biol Clem 268: 23215–23218 CAS Google Scholar
Just I, Mohr C, Schallehn G, Menard L, Didsbury JR, Vandekerckhove J, van Damme J, Aktories K (1992) Purification and characterization of an ADPribosyltransferase produced by Clostridium limosum. J Biol Chem 267: 10274–10280 PubMedCAS Google Scholar
Just I, Mohr C, Habermann B, Koch G, Aktories K (1993) Enhancement of Clostridium botulinum C3-catalyzed ADP—ribosylation of recombinant rhoA by sodium dodecyl sulfate. Biochem Pharmacol 45: 1409–1416 ArticlePubMedCAS Google Scholar
Just I, Fritz G, Aktories K, Giry M, Popoff MR, Boquet P, Hegenbarth S, Von EichelStreiber C (1994) Clostridium difficile toxin B acts on the GTP-binding protein Rho. J Biol Chem 269: 10706–10712 Google Scholar
Just I, Selzer J, Jung M, van Damme J, Vandekerckhove J, Aktories K (1995a) Rho—ADP—ribosylating exoenzyme from Bacillus cereus — purification, characterization and identification of the NAD-binding site. Biochemistry 34: 334–340 ArticlePubMedCAS Google Scholar
Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995b) Gluco- sylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500–503 ArticlePubMedCAS Google Scholar
Just I, Wilm M, Selzer J, Rex G, Von Eichel-Streiber C, Mann M, Aktories K (1995c) The enterotoxin from Clostridium difficile ( ToxA) monoglucosylates the Rho proteins. J Biol Chem 270: 13932–13936 Google Scholar
Katoh H, Aoki J, Ichikawa A, Negishi M (1998) p160 RhoA-binding kinase ROKa induces neurite retractions. J Biol Chem 273: 2489–2492 Google Scholar
Kikuchi A, Kuroda S, Sasaki T, Kotani K, Hirata K, Katayama M, Takai Y (1992) Functional interactions of stimulatory and inhibitory GDP/GTP exchange proteins and their common substrate small GTP-binding protein. J Biol Chem 267: 14611–14615 PubMedCAS Google Scholar
Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y (1993) Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein ( Rho GDI ). J Cell Biol 120: 1187–1195 Google Scholar
Koch G, Habermann B, Mohr C, Just I, Aktories K (1992) ADP—ribosylation of Rho proteins is inhibited by melittin, mast cell-degranulating peptide and compound 48/80. Eur J Pharmacol Mol Pharmacol 226: 87–91 ArticleCAS Google Scholar
Koch G, Norgauer J, Aktories K (1994) ADP—ribosylation of Rho by Clostridium limosum exoenzyme affects basal but not N-formyl-peptide-stimulated actin polymerization in human myeloid leukaemic (HL60) cells. Biochem J 299: 775–779 PubMedCAS Google Scholar
Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15: 1942–1952 PubMedCAS Google Scholar
Kuribara H, Tago K, Yokozeki T, Sasaki T, Takai Y, Morii N, Narumiya S, Katada T, Kanaho Y (1995) Synergistic activation of rat brain phospholipase D by ADP—ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem 270: 25667–25671 ArticlePubMedCAS Google Scholar
Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382: 177–179 ArticlePubMedCAS Google Scholar
Lang P, Guizani L, Vitté-Mony I, Stancou R, Dorseuil O, Gacon G, Bertoglio J (1992) ADP—ribosylation of the ras-related, GTP-binding protein RhoA inhibits lymphocyte-mediated cytotoxicity. J Biol Chem 267: 11677–11680 Google Scholar
Laudanna C, Campbell JJ, Butcher EC (1996) Role of Rho in chemoattractantactivated leukocyte adhesion through integrins. Science 271: 981–983 ArticlePubMedCAS Google Scholar
Laudanna C, Campbell JJ, Butcher EC (1997) Elevation of intracellular cAMP inhibits RhoA activation and integrin-dependent leukocyte adhesion induced by chemoattractants. J Biol Chem 272: 24141–24144 ArticlePubMedCAS Google Scholar
Lim L, Manser E, Leung T, Hall C (1996) Regulation of phosphorylation pathways by p21 GTPases — the p21 Ras-related Rho subfamily and its role in phosphorylation-signalling pathways. Eur J Biochem 242: 171–185 ArticlePubMedCAS Google Scholar
Locht C, Antoine R (1997) Pertussis toxin. In: Aktories K (ed) Bacterial toxins tools in cell biology and pharmacology. Chapman and Hall, Weinheim, pp 33–45 Chapter Google Scholar
Mackay DJG, Nobes CD, Hall A (1995) The Rho’s progress: a potential role during neuritogenesis for the Rho family of GTPases. Trends Neurosci 18: 496–501 ArticlePubMedCAS Google Scholar
Mackay DJG, Esch F, Furthrnayr H, Hall A (1997) Rho-and Rae-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J Cell Biol 138: 927–938 ArticlePubMedCAS Google Scholar
Majumdar M, Seasholtz TM, Goldstein D, de Lanerolle P, Brown JH (1998) Requirement for Rho-mediated myosin light chain phosphorylation in thrombin-stimulated cell rounding and its dissociation from mitogenesis. J Biol Chem 273: 10099–10106 ArticlePubMedCAS Google Scholar
Mao J, Yuan H, Xie W, Simon MI, Wu D (1998a) Specific involvement of G proteins in regulation of serum response factor-mediated gene transcription by different receptors. J Biol Chem 273: 27118–27123 ArticlePubMedCAS Google Scholar
Mao J, Yuan H, Xie W, Wu D (1998b) Guanine nucleotide exchange factor GEFI15 specifically mediates activation of Rho and serum response factor by the G protein a subunit Gal3. Proc Natl Acad Sci USA 95: 12973–12976 ArticlePubMedCAS Google Scholar
Mecsas J, Raupach B, Falkow S (1998) The Yersinia Yops inhibit invasion of Listeria, Shigella and Edwardsiella, but not Salmonella, into epithelial cells. Mol Microbial 28: 1269–1281 ArticleCAS Google Scholar
Morii N, Narumiya S (1995) Preparation of native and recombinant Clostridium botulinum C3 ADP—ribosyltransferase and identification of Rho proteins by ADP—ribosylation. Meth Enzymol 196–206 Google Scholar
Morii N, Ohashi Y, Nemoto Y, Fujiwara M, Ohnishi Y, Nishiki T, Kamata Y. Kozaki S, Narumiya S, Sakaguchi G (1990) Immunochemical Identification of the ADP—ribosyltransferase in botulinum Cl neurotoxin as C3 exoenzyme-like molecule. J Biochem 107: 769–775 CAS Google Scholar
Moriishi K, Syuto B, Yokosawa N, Oguma K, Saito M (1991) Purification and characterization of ADP—ribosyltransferases (exoenzyme C3) of Clostridium botulinum type C and D strains. J Bacterial 173: 6025–6029 CAS Google Scholar
Moriishi K, Syuto B, Saito M, Oguma K, Fujii N, Abe N, Naiki M (1993) Two different types of ADP—ribosyltransferase C3 from Clostridium bona/mum type-Dlysogenized organisms. Infect Immun 61: 5309–5314 PubMedCAS Google Scholar
Narumiya S (1996) The small GTPase Rho: cellular functions and signal transduction. J Biochem (Tokyo) 120: 215–228 ArticleCAS Google Scholar
Narumiya S, Morii N, Ohno K, Ohashi Y, Fujiwara M (1988) Subcellular distribution and isoelectric heterogeneity of the substrate for ADP—ribosyl transferase from Clostridium botulinum. Biochem Biophys Res Commun 150: 1122–1130 ArticlePubMedCAS Google Scholar
Nemoto E, Yu YJ, Dennert G (1996) Cell surface ADP—ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1) function in T cells. J Immunol 157: 3341–3349 PubMedCAS Google Scholar
Nemoto Y, Namba T, Kozaki S, Narumiya S (1991) Clostridium botulinum C’._I ADP—ribosyltransferase gene. J Biol Chem 266: 19312–19319 Google Scholar
Nishiyama T, Sasaki T, Takaishi K, Kato M, Yaku H, Araki K, Matsuura Y, Takai (1994) rac p21 Is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor-and 12-O-tetradecanoylphorbol-13-acetate ( TPA)-induced membrane ruffling in KB cells. Mol Cell Biol 14: 2447–2456 Google Scholar
Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81.53–62 Google Scholar
Nobes CD, Hall A (1997) Clostridium botulinum C3 exoenzyme and studies on Rho proteins. In: Aktories K (ed) Bacterial toxins — tools in cell biology and pharn-acology. Chapman and Hall, Weinheim, pp 71–83 Google Scholar
Nobes CD, Lauritzen I, Mattel M-G, Paris S, Hall A (1998) A new member of the Rho family, Rndl, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141: 187–197 Google Scholar
Nusrat A, Giry M, Turner JR, Colgan SP, Parkas CA, Carnes D, Lemichez E, Boquet P, Madara JL (1995) Rho protein regulates tight junctions and perijuncticnal actin organization in polarized epithelia. Proc Nall Acad Sci USA 92: 1062910633 Google Scholar
Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30: 668–673 PubMedCAS Google Scholar
Olson MF, Ashworth A, Hall A (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell-cycle progression through GI. Science 269: 1270–1272 ArticlePubMedCAS Google Scholar
Olson ME Paterson HF, Marshall CJ (1998) Signals from Ras and Rho GTPases interact to regulate expression of p21 “n ic’r’. Nature 394: 295–299 ArticleCAS Google Scholar
Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111: 1001–1007 ArticlePubMedCAS Google Scholar
Pederson KJ, Vallis AJ, Aktories K, Frank DW, Barbieri JT (1998) The amino-terminal domain of ExoS, a bifunctional toxin, disrupts actin filaments via a Rho-dependent mechanism. submitted Google Scholar
Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP—ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucl Acids Res 18: 1291 ArticlePubMedCAS Google Scholar
Popoff MR, Hauser D, Boquet P, Eklund MW, Gill DM (1991) Characterization of the C3 gene of Clostridium botulinum types C and D and its expression in Escherichia coli. Infect Immun 59: 3673–3679 PubMedCAS Google Scholar
Prepens U, Just I, Von Eichel-Streiber C, Aktories K (1996) Inhibition of Fe-eRImediated activation of rat basophilic leukemia cells by Clostridium difficile toxin B (monoglucosyltransferase). J Biol Chem 271: 7324–7329 ArticlePubMedCAS Google Scholar
Price LS, Norman JC, Ridley AJ, Koffer A (1995) The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr Biol 5: 68–73 ArticlePubMedCAS Google Scholar
Reif K, Cantrell DA (1998) Networking Rho family GTPases in lymphocytes. Immunity 8: 395–401 ArticlePubMedCAS Google Scholar
Ren X-D, Bokoch GM, Traynor-Kaplan A, Jenkins GH, Anderson RA, Schwartz MA (1996) Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol-4-phosphate 5 kinase in Swiss 3T3 cells. Mol Biol Cell 7: 435–442 PubMedCAS Google Scholar
Renshaw MW, Toksoz D, Schwartz MA (1996) Involvement of the small GTPase Rho in integrin-mediated activation of mitogen-activated protein kinase. J Biol Chem 271: 21691–21694 ArticlePubMedCAS Google Scholar
Ridley AJ, Hall A (1992) The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399 ArticlePubMedCAS Google Scholar
Ridley AJ, Hall A (1994) Signal transduction pathways regulating Rho-mediated stress- fibre formation: requirement for a tyrosine kinase. EMBO J 13: 2600–2610 PubMedCAS Google Scholar
Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTPbinding protein Rac regulates growth-factor-induced membrane ruffling. Cell 70: 401–410 ArticlePubMedCAS Google Scholar
Rubin EJ, Gill DM, Boguet P, Popoff MR (1988) Functional modification of a 21kilodalton G protein when ADP—ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8: 418–426 PubMedCAS Google Scholar
Sah VP, Hoshijima M, Chien KR, Brown JH (1996) Rho is required for Gag and a,adrenergic receptor signaling in cardiomyocytes — dissociation of Ras and Rho pathways. J Biol Chem 271.31185–31190 Google Scholar
Saito Y, Narumiya S (1997) Preparation of Clostridium botulinum C3 exoenzyme and application of ADP—ribosylation of Rho proteins in biological systems. In: Aktories K (ed) Bacterial toxins — tools in cell biology and pharmacology. Chapman and Hall, Weinheim, pp 85–92 Chapter Google Scholar
Saito Y, Nemoto Y, Ishizaki T, Watanabe N, Morii N, Narumiya S (1995) Identification of Glu’73 as the critical amino acid residue for the ADP—ribosyltransferase activity of Clostridium botulinum C3 exoenzyme. FEBS Lett 371: 105–109 ArticlePubMedCAS Google Scholar
Santos MF, McCormack SA, Guo Z, Okolicany J, Zheng Y, Johnson LR,Tigyi G (1997) Rho proteins play a critical role in cell migration during the early phase of mucosal restitution. J Clin Invest 100: 216–225 CAS Google Scholar
Schmalzing G, Richter HP, Hansen A, Schwarz W, Just I, Aktories K (1995) Involvement of the GTP-binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes. J Cell Biol 130: 1319–1332 ArticlePubMedCAS Google Scholar
Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K (1997) Deamidation of Gln63 of Rho induced by Escherichia coli cytotoxic necrotizing factor 1. Nature 387: 725–729 ArticlePubMedCAS Google Scholar
Schmidt M, Rümenapp U, Bienek C, Keller J, Von Eichel-Streiber C, Jakobs KH (1996) Inhibition of receptor signaling to phospholipase D by Clostridium clifficile toxin B — role of Rho proteins. J Biol Chem 271: 2422–2426 ArticlePubMedCAS Google Scholar
Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP—ribosylation of Rho proteins — effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 37: 5296–5304 Google Scholar
Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho-gene product is the modification site for botulinum ADP—ribosyltransferase. J Biol Chem 264: 8602–8605 PubMedCAS Google Scholar
Siddiqi AR, Smith JL, Ross AH, Qiu R-G, Symons M, Exton JH (1995) Regulation of phospholipase D in HL60 cells. J Biol Chem 270: 8466–8473 ArticlePubMedCAS Google Scholar
Sixma TK, Pronk SE, Kalk KH, Wartna ES, van Zanten BAM, Witholt B. Hol WGJ (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371–377 CAS Google Scholar
Smith RJ, Sam LM, Justen JM (1988) Diaglygycerols modulate human polymorphonuclear neutrophil responsiveness: effects on intracellular calcium mobilization, granule exocytosis, and superoxide-anion production. J Leukocyte Biol 43: 411–419 PubMedCAS Google Scholar
Stam JC, Michiels F, Van der Kammen RA, Moolenaar WH, Collard JG (1998) Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J 17: 4066–4074 ArticlePubMedCAS Google Scholar
Stasia M-J, Jouan A, Bourmeyster N, Boquet P, Vignais PV (1991) ADP—ribosylation of a small size GTP-binding protein in bovine neutrophils by the C3 exoenzyme of Clostridium botulinum and effect on the cell motility. Biochem Biophys Res Commun 180: 615–622 ArticlePubMedCAS Google Scholar
Stein PE, Boodhoo A, Armstrong GD, Cockle SA, Klein MH, Read RJ (1994) the crystal structure of pertussis toxin. Structure 2: 45–57 Google Scholar
Sugai M, Enomoto T, Hashimoto K, Matsumoto K, Matsuo Y, Ohgai H, Hong Y-M. Inoue S, Yoshikawa K, Suginaka H (1990) A novel epidermal cell differentiation inhibitor (EDIN): purification and characterization from Staphylococcus aureus. Biochem Biophys Res Commun 173: 92–98 CAS Google Scholar
Symons M (1996) Rho family GTPases: the cytoskeleton and beyond. Trends BiochenSci 21: 178–181 CAS Google Scholar
Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y (1994) Involvement of Rho p21 small GTP-binding protein and its regulator in th HGF-induced cell motility. Oncogene 9: 273–279 PubMedCAS Google Scholar
Takaishi K, Sasaki T, Kameyama T,Tsukita S,Takai Y (1995) Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites and cleavage furrows. Oncogene 11: 39–48 CAS Google Scholar
Tigyi G, Fischer DJ, Sebök A, Marshall F, Dyer DL, Miledi R (1996a) Lysophosphatidic-acid-induced neurite retraction in PC12 cells: neurite-protective effects of cyclic-AMP signaling. J Neurochem 66: 549–558 ArticlePubMedCAS Google Scholar
Tigyi G, Fischer DJ, Sebök A, Yang C, Dyer DL, Miledi R (1996b) Lysophosphatidicacid-induced neurite retraction in PC12 cells: control by phosphoinositide Ca’ signaling and Rho. J Neurochem 66: 537–548 ArticlePubMedCAS Google Scholar
Van Nieuw Amerongen GP, Draijer R, Vermeer MA, Van Hinsbergh V W M (1998) Tr insient and prolonged increase in endothelial permeability induced by histamine and thrombin. Role of protein kinases, calcium, and RhoA. Cire Res 83: 1115–1123 Google Scholar
Verschueren H, De Baetselier P, De Braekeleer J, Dewit J, Aktories K, Just I (1597) ADP—ribosylation of Rho-proteins with botulinum C3 exoenzyme inhibits invasion and shape changes of T-lymphoma cells. Eur J Cell Biol 73: 182–187 Google Scholar
Vouret-Craviari V, Boquet P, Pouysségur J, Van Obberghen-Schilling E (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 9: 2639–2653 PubMedCAS Google Scholar
Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Naumiya S (1997) pl40mDia, a mammalian homolog of Drosophila diaphanous, is a target protein fro Rho small GTPase and is a ligand for profilin. EMBO J 16: 3044–3056 Google Scholar
Wei Y, Zhang Y, Derewenda U, Liu X, Minor W, Nakamoto RK, Somlyo AV, Somlyo AP, Derewenda ZS (1997) Crystal structure of RhoA-GDP and its functional implications. Nature Struct Biol 4: 699–703 ArticlePubMedCAS Google Scholar
Weiss MS, Blanke SR, Collier RJ, Eisenberg D (1995) Structure of the isolated catalytic domain of diphtheria toxin. Biochemistry 34: 773–781 ArticlePubMedCAS Google Scholar
Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP—ribosyltransferase. Eur J Cell Biol 54: 237–245 PubMedCAS Google Scholar
Williamson KC, Smith LA, Moss J, Vaughan M (1990) Guanine nucleotide-dependent ADP—ribosylation of soluble Rho catalyzed by Clostridium botulinum C3 ADPribosyltransferase. J Biol Chem 265: 20807–20812 PubMedCAS Google Scholar
Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ (1998) Regulation of TNF-ainduced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 176: 150–165 ArticlePubMedCAS Google Scholar
Yamamoto M, Marui N, Sakai T, Morii N, Kozaki S, Ikai K, Imamura S, Narumiya S (1993) ADP—ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G, phase of the cell cycle. Oncogene 8: 1449–1455 PubMedCAS Google Scholar