- Abe, H. 1981. Determination of L-histidine-related compounds in fish muscles using high-performance liquid chromatography. Bull. Jap. Soc. Scient. Fish. 47: 139.
Google Scholar
- Abe, H. 1983. Distribution of free L-histidine and its related compounds in marine fishes. Bull. Jap. Soc. Scient. Fish. 49: 1683–1687.
Google Scholar
- Abe, H., R.W. Brill & P.W. Hochachka. 1986. Metabolism of Lhistidine, carnosine, and anserine in skipjack tuna. Physiol. Zool. 59: 439–450.
Google Scholar
- Abe, H., G.P. Dobson, U. Hoeger & W.S. Parkhouse. 1985. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. Amer. J. Physiol. 249: R449–R454.
Google Scholar
- Alexander, N., R.M. Laurs, A. McIntosh & S.W. Russell. 1980. Haematological characteristics of albacore, Thunnus alalunga (Bonnaterre), and skipjack, Katsuwonus pelamis (Linnaeus). J. Fish. Bol. 16: 383–395.
Google Scholar
- Alexander, R.M. 1969. The orientation of muscle fibres in the myomeres of fishes. J. Mar. Biol. Assoc. U.K. 49: 263–290.
Google Scholar
- Altringham, J.D. & I.A. Johnston. 1985. The effects of temperature on ATPase activity and force generation in skinned muscle fibers from the Pacific blue marlin (Makaira nigricans). Experientia 41: 1532–1533.
Google Scholar
- Altringham, J.D. & I.A. Johnston. 1986. Evolutionary adaptation to temperature in fish muscle cross bridge mechanisms: tension and ATP turnover. J. Comp. Physiol. B 156: 819–821.
Google Scholar
- Ameyaw-Akumfi, C. 1975. The functional morphology of the body and tail muscles of the tuna Katsuwonus pelamis Linnaeus. Zool. Anz. 194: 367–375.
Google Scholar
- Arthur, P.G., T.G. West, R.W. Brill, P.M. Schulte & P.W. Hochachka. 1992. Recovery metabolism of skipjack tuna (Katsuwonus pelamis) white muscle: rapid and parallel changes of lactate and phosphocreatine after exercise. Can. J. Zool. 70: 1230–1239.
Google Scholar
- Barrett, I. & A.A. Williams. 1065. Hemoglobin content of the blood of fifteen species of marine fishes. Calif. Fish Game Fish Bull. 51: 216–218.
Google Scholar
- Basile, C., G. Goldspink, M. Modigh & B. Tota. 1976. Morphological and biochemical characterisation of the inner and outer ventricular myocardial layers of adult tuna fish (Thunnus thynnus L.). Comp. Biochem. Physiol. 54B: 279–283.
Google Scholar
- Bass, A., B. Ostadal, V. Pelouch & V. Vitek. 1973. Differences in weight parameters, myosin-ATPase activity and the enzyme pattern of energy supplying metabolism between the compact and spongious cardiac musculature of carp (Cyprinus carpio) and turtle (Testudo horsfieldi). Pflugers Arch. 343: 65–77.
Google Scholar
- Beamish, F.W.H. 1978. Swimming capacity. pp. 101–187. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 7, Academic Press, New York.
Google Scholar
- Black, E.C., A.R. Connor, K.C. Lam & W.G. Chiu. 1962. Changes in glycogen, pyruvate, and lactate in rainbow trout (Salmo gairdneri) during and following muscular activity. J. Fish. Res. Board Can. 19: 409–436.
Google Scholar
- Block, B.A. 1991a. Evolutionary novelties: how fish have built a heater out of muscle. Amer. Zool. 31: 726–742.
Google Scholar
- Block, B.A. 1991b. Endothermy in fish: thermogenesis, ecology, and evolution. pp. 269–311. In: P.W. Hochachka & T.P. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Vol. 1, Elsevier, New York.
- Block, B.A., D. Booth & F.G. Carey. 1992. Direct measurement of swimming speeds and depth of blue marlin. J. Exp. Biol. 166: 267–284.
Google Scholar
- Block, B.A. & J.R. Finnerty. 1994. Endothermy in fishes: a phylogenetic analysis of constraints, predispositions and selection pressures. Env. Biol. Fish 40: 283–302.
Google Scholar
- Bone, Q. 1978. Myotomal muscle fiber types in Scomber and Katsuwonus. pp. 183–205. In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Google Scholar
- Breisch, E.A., F. White, H.M. Jones & R.M. Laurs. 1983. Ultrastructural morphometry of the myocardium of Thunnus alalunga. Cell Tiss. Res. 233: 427–438.
Google Scholar
- Brill, R.W. 1987. On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature change. U.S. Fish. Bull. 85: 25–35.
Google Scholar
- Brill, R.W. & P.G. Bushnell. 1991. Metabolic and cardiac scope of high energy demand teleosts, the tunas. Can. J. Zool. 69: 2002–2009.
Google Scholar
- Brill, R.W. & A.E. Dizon. 1979. Red and white muscle fiber activity in swimming skipjack tuna, Katsuwonus pelamis (Linnaeus). J. Fish Biol. 6: 665–670.
Google Scholar
- Buck, L.T., R.W. Brill & P.W. Hochachka. 1992. Gluconeogenesis in hepatocytes isolated from the skipjack tuna Katsuwonus pelamis. Can. J. Zool. 70: 1254–1257.
Google Scholar
- Buddington, R.K. & J.M. Diamond. 1987. Pyloric ceca of fish: a ‘new’ digestive organ. Amer. J. Physiol. 252: G65–G76.
Google Scholar
- Bushnell, P.G., R.W. Brill & R.E. Bourke. 1990. Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions of ambient oxygen. Can. J. Zool. 68: 1857–1865.
Google Scholar
- Butler, P.J. & J.F. Metcalfe. 1983. Control of respiration and circulation. pp. 41–65. In: J.C. Rankin, T.J. Pitche & R.T. Duggan (ed.) Control Processes in Fish Physiology, John Wiley & Sons, New York.
Google Scholar
- Carey, F.G., J.W. Kanwisher & E.D. Stevens. 1984. Bluefin tuna warm their viscera during digestion. J. Exp. Biol. 109: 1–20.
Google Scholar
- Carey, F.G. & K.D. Lawson. 1973. Temperature regulation in free-swimming bluefin tuna. Comp. Biochem. Physiol. 44A: 375–392.
Google Scholar
- Castellini, M.A. & G.N. Somero. 1981. Buffering capacity of vertebrate muscle: correlations with potentials for anaerobic function. J. Comp. Physiol. 143: 191–198.
Google Scholar
- Childress, J.J. & G.N. Somero. 1979. Depth-related enzymatic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar. Biol. 52: 273–283.
Google Scholar
- Cole, R.P. 1982. Myoglobin function in exercising skeletal muscle. Science 216: 523–525.
Google Scholar
- Collette, B.B. & C.E. Nauen. 1983. Scombrids of the world. FAO Species Catalog, Vol. 2. 137 pp.
- Crabtree, B. & E.A. Newsholme. 1972. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase in muscles from vertebrates and invertebrates. Biochem. J. 126: 49–58.
Google Scholar
- Davie, P.S. & C. Daxboeck. 1984. Anatomy and adrenergic pharmacology of the coronary vascular bed of Pacific blue marlin (Makaira nigricans). Can. J. Zool. 62: 1886–1888.
Google Scholar
- Daxboeck, C. & P.S. Davie. 1986. Physiological investigations of marlin. pp. 50–70. In: S. Nilsson & S. Holmgren (ed.) Fish Physiology: Recent Advances, Croom Helm, London.
Google Scholar
- Dickson, K.A. 1988. Why are some fishes endothermic? Interspecific comparisons of aerobic and anaerobic metabolic capacities in endothermic and ectothermic scombrids. Ph.D. Dissertation, University of California, San Diego. 358 pp.
- Dickson, K.A., A.V. Dall, J.M. Eisman, E.T. McDonnell & A.M. Hendrzak. 1988. Biochemical indices of aerobic and anaerobic capacity in red and white myotomal muscle of active, pelagic sharks: comparisons between endothermic and ectothermic species. J. Penn. Acad. Sci. 62: 147–151.
Google Scholar
- Dickson, K.A., M.O. Gregorio, S.J. Gruber, K.L. Loefler, M. Tran & C. Terrell. 1993. Biochemical indices of aerobic and anaerobic capacity in muscle tissues of California elasmobranch fishes differing in typical activity level. Mar. Biol. 117: 185–193.
Google Scholar
- Dickson, K.A. & G.N. Somero. 1987. Partial characterization of the buffering components of the red and white myotomal muscle of marine teleosts, with special emphasis on scombrid fishes. Physiol. Zool. 60: 699–706.
Google Scholar
- Dizon, A.E. 1977. Effect of dissolved oxygen concentration and salinity on swimming speed of two species of tunas. U.S. Fish. Bull. 75: 649–653.
Google Scholar
- Dobson, G.P., S.C. Wood, C. Daxboeck & S.E. Perry. 1986. Intracellular buffering and oxygen transport in the Pacific blue marlin (Makaira nigricans): adaptations to high-speed swimming. Physiol. Zool. 59: 150–156.
Google Scholar
- Dotson, R.C. 1978. Fat deposition and utilization in albacore. pp. 343–355. In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Google Scholar
- Driedzic, W.R. 1983. The fish heart as a model system for the study of myoglobin. Comp. Biochem. Physiol. A 76: 487–493.
Google Scholar
- Driedzic, W.R., B.D. Siddel, D. Stowe & R. Branscombe. 1987. Matching of vertebrate cardiac energy demand to energy metabolism. Amer. J. Physiol. 252: R930–R937.
Google Scholar
- Everse, J. & N.O. Kaplan. 1973. LDH: Structure and function. Adv. Enzymol. 37: 71–133.
Google Scholar
- Ewart, H.S. & W.R. Driedzic. 1987. Enzymes of energy metabolism in salmonid hearts: spongy versus cortical myocardia. Can. J. Zool. 65: 623–627.
Google Scholar
- Farrell, A.P. 1991. From hagfish to tuna: a perspective on cardiac function in fish. Physiol. Zool. 64: 1137–1164.
Google Scholar
- Fierstine, H.L. & V. Walters. 1968. Studies in locomotion and anatomy of scombroid fishes. Memoirs So. Calif. Acad. Sci. 6: 1–31.
Google Scholar
- Gemelli, L., G. Martino & B. Tota. 1980. Oxidation of lactate in the compact and spongy myocardium of tuna fish (Thunnus thynnus thynnus L.). Comp. Biochem. Physiol. 65B: 321–326.
Google Scholar
- George, J.C. & E.D. Stevens. 1978. Fine structure and metabolic adaptation of red and white muscles in tuna. Env. Biol. Fish. 3: 185–191.
Google Scholar
- Gibbs, A. & G.N. Somero. 1990. Na+-K+-adenosine triphosphatase activities in gills of marine teleost fishes: changes with depth, size and locomotory activity level. Mar. Biol. 106: 315–321.
Google Scholar
- Giovane, A., G. Greco, A. Maresca & B. Tota. 1980. Myoglobin in the heart ventricle of tuna and other fishes. Experientia 36: 219–220.
Google Scholar
- Gooch, J.A., M.B. Hale, T. Brown, Jr., J.C. Bonnet, C.G. Brand & L.W. Reiger. 1987. Proximate and fatty acid composition of 40 southeastern U.S. finfish species. NOAA Tech. Report NMFS 54. 23 pp.
- Gooding, R.M., W.H. Neill & A.E. Dizon. 1981. Respiration rates and low-oxygen tolerance limits in skipjack tuna, Katsuwonus pelamis. U.S Fish. Bull. 79: 31–48.
Google Scholar
- Graham, J.B. 1983. Heat transfer. pp. 248–279. In: P.W. Webb & D. Weihs (ed.) Fish Biomechanics, Praeger Publishers, New York.
Google Scholar
- Graham, J.B., H. Dewar, N.C. Lai, W.R. Lowell & S.M. Arce. 1990. Aspects of shark swimming performance determined using a large water tunnel. J. Exp. Biol. 151: 175–192.
Google Scholar
- Graham, J.B., F.J. Koehin & K.A. Dickson. 1983. Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to endothermy. Can. J. Zool. 61: 2087–2096.
Google Scholar
- Graham, J.B., W.R. Lowell, N.C. Lai & R.M. Laurs. 1989. O2 tension, swimming-velocity, and thermal effects on the metabolic rate of the Pacific albacore Thunnus alalunga. Exp. Biol. 48: 89–94.
Google Scholar
- Guppy, M. & P.W. Hochachka. 1978. Controlling the highest lactate dehydrogenase activity known in nature. Amer. J. Physiol. 234: R136–R140.
Google Scholar
- Guppy, M., W.C. Hulbert & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzymes and metabolite profiles. J. Exp. Biol. 82: 303–320.
Google Scholar
- Hebrank, J.H., M.R. Hebrank, J.H. Long, B.A. Block & S.A. Wainwright. 1990. Backbone mechanics of the blue marlin Makaira nigricans (Pisces, Istiophoridae). J. Exp. Biol. 148: 449–459.
Google Scholar
- Hochachka, P.W., W.C. Hulbert & M. Guppy. 1978. The tuna power plant and furnace. pp. 153–174. In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Google Scholar
- Hochachka, P.W. & T.P. Mommsen. 1983. Protons and anaerobiosis. Science 219: 1391–1397.
Google Scholar
- Hughes, G.M. 1984. General anatomy of the gills. pp. 1–72. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 10, Academic Press, New York.
- Hulbert, W.C., M. Guppy & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. I. Muscle fine structure. J. Exp. Biol. 82: 289–302.
Google Scholar
- Ince, B.W. 1983. Pancreatic control of metabolism. pp. 89–102. In: J.C. Rankin, T.J. Pitcher & R.T. Duggan (ed.) Control Processes in Fish Physiology, John Wiley & Sons, New York.
Google Scholar
- Johnston, I.A, 1981. Structure and function of fish muscles. symp. Zool. Soc. London 48: 71–113.
Google Scholar
- Johnston, I.A. & J.D. Altringham. 1991. Movement in water: constraints and adaptations. pp.249–268. In: P.W. Hochachka & T.P. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Vol. 1, Elsevier, New York.
- Johnston, I.A. & R. Brill. 1984. Thermal dependence of contractile properties of single skinned muscle fibres from Antarctic and various warm water marine fishes including skipjack tuna (Katsuwonus pelamis) and kawakawa (Euthynnus affinis). J. Comp. Physiol. B 155: 63–70.
Google Scholar
- Johnston, I.A., W. Davison & G. Goldspink. 1977. Energy metabolism of carp swimming muscles. J. Comp. Physiol. 114: 203–216.
Google Scholar
- Johnston, I.A., N. Frearson & G. Goldspink. 1972. Myofibrillar ATPase activities of red and white myotomal muscles of marine fish. Experientia 28: 713–714.
Google Scholar
- Johnston, I.A. & T.W. Moon. 1980. Exercise training in skeletal muscle of brook trout (Salvelinus fontinalis). J. Exp. Biol. 87: 177–194.
Google Scholar
- Johnston, I.A. & T.W. Moon. 1981. Fine structure and metabolism of multiply innervated fast muscle fibres in teleost fish. Cell Tiss. Res. 219: 93–109.
Google Scholar
- Johnston, I.A. & J. Salamonski. 1984. Power output and forcevelocity relationship of red and white muscle fibres from the Pacific blue marlin (Makaira nigricans). J. Exp. Biol. 111: 171–177.
Google Scholar
- Johnston, I.A. & B. Tota. 1974. Myofibrillar ATPase in the various red and white muscles of the tunny (Thunnus thynnus L.) and the tub gumard (Trigla lucerna L.). Comp. Biochem. Physiol. 49B: 367–373.
Google Scholar
- Jorgensen, J.B. & T. Mustafa. 1980. The effect of hypoxia on carbohydrate metabolism in flounder (Platichthys flesus L.) — II. High energy phosphate compounds and the role of glycolytic and gluconeogenetic enzymes. Comp. Biochem. Physiol. 67B: 249–256.
Google Scholar
- Josephson, R.K. 1985. Mechanical power output from straited muscle during cyclic contraction. J. Exp. Biol. 114: 493–512.
Google Scholar
- Klawe, W.L. I. Barrett & B.M.H. Klawe. 1963. Haemogobin content of the blood of six species of scombroid fishes. Nature 198: 96.
Google Scholar
- Knox, D., M.J. Walton & C.B. Cowey. 1980. Distribution of enzymes of glycolysis and gluconeogenesis in fish tissues. Mar. Biol. 56: 7–10.
Google Scholar
- Lai, N.C., J.B. Graham, W.R. Lowell & R.M. Laurs. 1987. Pericardial and vascular pressures and blood flow in the albacore tuna, Thunnus alalunga. Exp. Biol. 46: 187–192.
Google Scholar
- Magnuson, J.J. 1969. Digestion and food consumption by skipjack tuna (Katsuwonus pelamis). Trans. Amer. Fish. Soc. 98: 379–392.
Google Scholar
- Magnuson, J.J. 1973. Comparative study of adaptations for continuous swimming and hydrostatic equilibrium of scombroid and xiphoid fishes. U.S. Fish. Bull. 71: 337–356.
Google Scholar
- Magnuson, J.J. 1978. Locomotion by scombrid fishes. pp. 239–313. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology Vol. 7, Academic Press, New York.
- Mathieu-Costello, O., P.J. Agey, R.B. Logemann, R.W. Brill & P.W. Hochachka. 1992. Capillary-fiber geometrical relationships in tuna red muscle. Can. J. Zool. 70: 1218–1229.
Google Scholar
- McLaughlin, R.L. & D.L. Kramer. 1991. The association between amount of red muscle and mobility in fishes: a statistical evaluation. Env. Biol. Fish. 30: 369–378.
Google Scholar
- Milligan, C.L. & C.M. Wood 1986. Tissue intracellular acid-base status and the fate of lactate after exhaustive exercise in the rainbow trout. J. Exp. Biol. 135 119–131.
Google Scholar
- Mommsen, T.P. 1984. Metabolism of the fish gill. pp. 203–238. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 10, Academic Press, New York.
- Moon, T.W. & I.A. Johnston. 1980. Starvation and the activities of glycolytic and gluconeogenic enzymes in skeletal muscle and liver of the plaice, Pleuronectes platessa. J. Comp. Physiol. 136: 31–38.
Google Scholar
- Mosse, P.R.L. 1979. Capillary distribution and metabolic histochemistry of the lateral propulsive musculature of pelagic teleost fish. Cell Tiss. Res. 203: 141–160.
Google Scholar
- Moyes, C.D., O.A. Mathieu-Costello, R.W. Brill & P.W. Hochachka. 1992. Mitochondrial metabolism of caidiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can. J. Zool. 70: 1246–1253.
Google Scholar
- Okuma, E. & H. Abe. 1992. Major buffering constituents in animal muscle. Comp. Biochem. Physiol. 102A: 37–41.
Google Scholar
- Olson, R.J. & C.H. Boggs. 1986. Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Can. J. Fish. Aquatic Sci. 43: 1760–1775.
Google Scholar
- Olson, R.J. & V.P. Scholey. 1990. Captive tunas in a tropical marine research laboratory: growth of late-larval and early-juvenile black skipjack Euthynnus lineatus. U.S. Fish. Bull. 88: 821–828.
Google Scholar
- Pagnotta, A. & C.L. Milligan. 1991. The role of blood glucose in the restoration of muscle glycogen during recovery from exchaustive excercise in rainbow trout (Oncorhynchus mykiss) and winter flounder (Pseudopleuronectes americanus). J. Exp. Biol. 161: 489–508.
Google Scholar
- Perry S.F, C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985. Effects of exhausting exercise on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Physiol. Zool. 58: 421–429.
Google Scholar
- Poupa, O. & L. Lindstrom. 1983. Comparative and scaling aspects of heart and body weights with reference to blood supply of cardiac fibers. Comp. Biochem. Physiol. 76A: 413–421.
Google Scholar
- Rome, L.C., R.P. Funke, R.M. Alexander, G. Lutz, H. Aldridge, F. Scott & M. Freadman. 1988. Why animals have different muscle fibre types. Nature 335: 824–827.
Google Scholar
- Rome, L.C. & D. Swank. 1992. The influence of temperature on power output of scup red muscle during cyclical length changes. J. Exp. Biol. 171: 261–281.
Google Scholar
- Rosser, B.W.C., B.J. Norris & P.M. Nemeth. 1992. Metabolic capacity of individual muscle fibers from different anatomic locations. J. Histochem. Cytochem. 40: 819–825.
Google Scholar
- Santer, R.M., M. Greer Walker, L. Emerson & P.R. Witthames. 1983. On the morphology of the heart ventricle in marine teleost fish (Teleostei). Comp. Biochem. Physiol. 76A: 453–457.
Google Scholar
- Schaefer, K.M. 1984. Swimming performance, body temperatures and gastic evacuation times of the black skipjack Euthynnus lineatus. Copeia 1984: 1000–1005.
Google Scholar
- Schaefer, K.M. 1985. Body temperatures in troll caught frigate tuna, Auxis thazard. Copeia 1984: 231–233.
Google Scholar
- Schulte, P.M., C.D. Moyes & P.W. Hochachka. 1992. Integrating metabolic pathways in post-exercise recovery of white muscle. J. Exp. Biol. 166: 181–195.
Google Scholar
- Sharp, G.D. & R.C. Dotson. 1977. Energy for migration in albacore, Thunnus alalunga. U.S. Fish. Bull. 75: 447–450.
Google Scholar
- Sharp, G.D. & S.W. Pirages. 1978. The distribution of red and white swimming muscles, their biochemistry, and the biochemical phylogeny of selected scombroid fishes. pp. 41–78. In: G.D. Sharp & A.E. Dizon (ed.) The distribution of red and white swimming muscles, their biochemistry, and the biochemical phylogeny of selected scombroid fishes, Academic Press, New York.
Google Scholar
- Sheridan, M.A. 1988. Lipid dynamics in fish: aspects of absorption, transportation, deposition, and mobilization. Comp. Biochem. Physiol. 90B: 679–690.
Google Scholar
- Sidell, B.D., W.R. Driedzic, D.B. Stowe & I.A. Johnston. 1987. Biochemical correlates of power development and metabolic fuel preferenda in fish hearts. Physiol. Zool. 60: 221–232.
Google Scholar
- Siebenaller, J.F. & G.N. Somero. 1982. The maintenance of different enzyme activity levels in congeneric fishes living at different depths. Physiol. Zool. 55: 171–179.
Google Scholar
- Siebenaller, J.F, G.N. Somero & R.L. Haedrich. 1982. Biochemical characteristics of macrourid fishes differing in their depth of distribution. Biol. Bull. 163: 240–249.
Google Scholar
- Somero, G.N. & J.J. Childress. 1980. A violation of the metabolism-size scaling paradigm: activities of glycolytic enzymes in muscle increase in large-size fishes. Physiol. Zool. 53: 322–337.
Google Scholar
- Steven, E.D. & F.G. Carey. 1981. One why of the warmth of warm-bodied fish. Amer. J. Physiol, 240: R151–R155.
Google Scholar
- Stevens, E.D. & A.E. Dizon. 1982. Energetics of locomotion in warm-bodied fish. Ann. Rev. Physiol. 44: 121–131.
Google Scholar
- Stevens, E.D. & J.M. McLeese. 1984. Why bluefin tuna have warm tummies: temperature effect on trypsin and chymotrypsin. Amer. J. Physiol. 246: R487–R494.
Google Scholar
- Suarez, R.K., M.D. Mallet, C. Daxboeck & P.W. Hochachka. 1986. Enzymes of energy metabolism and gluconeogenesis in the Pacific blue marlin Makaira nigricans. Can. J. Zool. 64: 694–697.
Google Scholar
- Suarez, R.K. & T.P. Mommsen. 1987. Gluconeogenesis in teleost fishes. Can. J. Zool. 65: 1869–1882.
Google Scholar
- Sullivan, K.M. & G.N. Somero. 1980. Enzyme activities of fish skeletal muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion. Mar. Biol. 60: 91–99.
Google Scholar
- Sund, P.N., M. Blackburn & F. Williams. 1981. Tunas and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol. Annu. Rev. 19: 443–512.
Google Scholar
- Swift, D.J. 1982. The blood haemoglobin concentration of the Atlantic mackerel (Scomber scombrus L.). Comp. Biochem. Physiol. 73A: 229–232.
Google Scholar
- Tang, J. & C.S. Wardle. 1992. Power output of two sizes of Atlantic salmon (Salmo salar) at their maximum sustained speeds. J. Exp. Biol. 166: 33–46.
Google Scholar
- Torres, J.J. & G.N. Somero. 1988. Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes. Mar. Biol. 98: 169–180.
Google Scholar
- Tota, B. 1983. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. 76A: 423–437.
Google Scholar
- Tsukamoto, K. 1984. Contribution of the red and white muscles to the power output required for swimming by the yellowtail. Bull. Jap. Soc. Scient. Fish. 50: 2031–2042.
Google Scholar
- Tullis, A., B.A. Block & B.D. Sidell. 1991. Activities of key metabolic enzymes in the heater organs of scombroid fishes. J. Exp. Biol. 161: 383–403.
Google Scholar
- Wainwright, S.A. 1983. To bend a fish. pp. 68–91. In: P.W. Webb & D. Weighs (ed.) Fish Biomechanis, Praeger Publishers, New York.
Google Scholar
- Walker, M.M., J.L. Kirschvink & S.R. Chang. 1984. A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224: 751–753.
Google Scholar
- Webb, P.W. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res. Board Can. 190: 1–158.
Google Scholar
- Webb, P.W. 1984. Form and function in fish swimming. Scientific Amer. 251 (1): 72–82.
Google Scholar
- Webb, P.W. & D. Weihs (ed.) 1983. Fish biomechanics. Praeger Publishers, New York. 398 pp.
- Weber, J., R.W. Brill & P.W. Hochachka. 1986. Mammalian metabolite flux rates in a teleost: lactate and glucose turnover in tuna. Amer. J. Physiol. 250: R452–R458.
Google Scholar
- Wells, R.M.G. & P.S. Davie. 1985. Oxygen binding by the blood and hematological effects of capture stress in two big gamefish: mako shark and striped marlin. Comp. Biochem. Physiol. 81A: 643–646.
Google Scholar
- White, F.C., R. Kelly, S. Kemper, P.T. Schumacker, K.R. Gallagher & R.M. Laurs. 1988. Organ blood flow haemodynamics and metabolism of the albacore tuna Thunnus alalunga (Bonnaterre). Exp. Biol. 47: 161–169.
Google Scholar
- White, E.N. & G.N. Somero. 1982. Acid-base regulation and phospholipid adaptations to temperature: time courses and physiological significance of modifying the milieu for protein function. Physiol. Rev. 62: 40–90.
Google Scholar
- Wittenberg, J.B. 1970. Myoglobinvfacilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol. Rev. 50: 559–636.
Google Scholar
- Wood, C.M. 1991. Acid-base and ion balance, metabolism, and their interactions, after exhaustive exercise in fish. J. Exp. Biol. 160: 285–308.
Google Scholar
- Zammit, V.A. & E.A. Newsholme. 1979. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem. J. 184: 313–322.
Google Scholar