The biodegradation of aromatic hydrocarbons by bacteria (original) (raw)
References
Amund, OO & Higgins, IJ (1985) The degradation of 1-phenylalkanes by an oil degrading strain of Acinetobacter lwoffi. Antonie van Leeuwenhoek 51: 45–56 Google Scholar
Arvin, E, Jensen, BK & Gundersen, AT (1989) Substrate interactions during the areobic degradation of benzene. Appl. Environ. Microbiol. 55: 3221–3225 Google Scholar
Axell, BC & Geary, PJ (1975) The metabolism of benzene by bacteria. Biochem. J. 136: 927–934 Google Scholar
Baggi, G, Catelani, D, Galli, E & Treccani, V (1972) The microbial degradation of phenylalkanes. Biochem. J. 126: 1091–1097 Google Scholar
Baggi, G, Boga, MM, Catelani, D, Galli, E & Trecccani, V (1983) Styrene catabolism by a strain of Pseudomonas fluorescens. Syst. Appl Microbiol. 4: 141–147 Google Scholar
Baggi, G, Barbieri, P, Galli, E & Tollari, S (1987) Isolation of a Pseudomonas stutzeri strain that degrades o-xxylene. Appl. Environ. Microbiol. 53: 2129–2132 Google Scholar
Ballard DGH, Courtis A, Shirley IM & Taylor SC (1983) A biotech route to polyphenylene: J. Chem. Soc., Chem. Comm. pp 954–955
Bateman, JN, Speers, B, Feduik, L & Hartline, RA (1986) Naphthalene association and uptake in Pseudomonas putida. J. Bacteriol. 166: 155–161 Google Scholar
Bauer, JE & Capone, DG (1988) Effects of co-occurring aromatic hydrocarbons on the degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl. Environ. Microbiol. 54: 1649–1655 Google Scholar
Bayly, RC & Barbour, MG (1984) The degradation of aromatic compounds by the meta and gentisate pathways. In: Gibson, DT (Ed) Microbial Degradation of Organic Compounds (pp 253–294). Marcel Dekker, New York Google Scholar
Berry, DF, Francis, AJ & Bollag, J-M (1987) Microbial metabolism of homocyclic aromatic compounds under anaerobic conditions. Microbiol. Revs. 51: 43–49 Google Scholar
Bestetti, G & Galli, E (1984) Plasmid-coded degradation of ethylbenzene and 1-phenylethanol in Pseudomonas fluoresens. FEMS Microbiol. Letts. 21: 165–168 Google Scholar
Bestetti, G, Galli, E, Benigini, C Orsini, F & Pelizzoni, F (1989) Biotransformation of styrenes by a Pseudomonas putida. Appl. Microbiol. Biotechnol. 30: 252–256 Google Scholar
Burlage, RS, Hooper, SW & Sayler, GS (1989) The TOL (pWWO) catabolic plasmid. Appl. Environ. Microbiol 55: 1323–1328 Google Scholar
Catelani, D, Sorlini, C & Treccani, V (1971) The metabolism of biphenyl by Pseudomonas putida. Experientia 27: 1173–1174 Google Scholar
Catelani, D, Colombi, A, Sorlini, C & Treccani, V (1973) Metabolism of biphenyl. 2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate: the meta cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem. J. 134: 1063–1066 Google Scholar
Catelani, D & Colombi, A (1974) Metabolism of biphenyl. Structure and physical properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate, the meta cleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem. J. 143: 431–434 Google Scholar
Catelani, D, Colombi, A, Sorlini, C & Treccani, V (1977) Metabolism of quaternary carbon compounds: 2,2-dimethylheptane and tertbutylbenzene. Appl. Environ. Microbiol. 34: 351–354 Google Scholar
Cerniglia, CE (1984) Microbial metabolism of polycyclic aromatic compounds. Adv. Appl. Microbiol. 30: 31–71 Google Scholar
Cerniglia, CE & Heitkamp, MA (1989) Microbial degradation of polycyclic compounds (PAH) in the aquatic environment In: Varanasi, V (Ed) Metabolism of PAHS in the Aquatic Environment (pp 41–68). CRC Press Inc. Boca Raton; Florida Google Scholar
Cripps, RE, Trudgill, PW & Wheatley, JG (1978) The metabolism of 1-phenylethanol and actophenone by Nocardia T5 and an Arthrobacter species. Eur. J. Biochem. 86: 175–186 Google Scholar
Cripps, RE & Watkinson, RJ (1978) Polycyclic aromatic hydrocarbons: Metabolism and environment l aspects. In: Watkinson, RJ (Ed) Developments in the Biodegradation of Hydrocarbons (pp 113–134). Applied Science Publishers, London Google Scholar
Dagley, S (1981) New perspectives in aromatic catabolism. In: Leisinger, T, Cook, AM, Hütter, R & Nüesch, J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp 181–186). Academic Press, New York Google Scholar
Dagley, S (1986) Biochemistry of aromatic hydrocarbon degradation in Pseudomonads. In: Sokatch, JR (Ed) The Bacteria (Vol 10) (pp 527–555). Academic Press, New York Google Scholar
Davey, JF & Gibson, DT (1974) Bacterial metabolism of _p_- and _m_-xylene: Oxidation of the methyl substituent. J. Bacteriol. 119: 923–929 Google Scholar
Davis, RS, Hossler, FE & Stone, RW (1968) Metabolism of _p_- and _m_-xylene by species of Pseudomonas. Can. J. Microbiol 27: 1005–1009 Google Scholar
DeFrank, JJ & Ribbons, DW (1976) The _p_-cymene pathway in Pseudomonas putida PL: Isolation of a dihydrodiol accumulated by a mutant. Biochem. Biophys. Res. Commun. 70: 1129–1135 Google Scholar
DeFrank, JJ & Ribbons, DW (1977a) _p_-Cymene pathway in Pseudomonas putida: Initial reactions. J. Bacteriol. 129: 1356–1364 Google Scholar
DeFrank, JJ & Ribbons, DW (1977b) _p_-Cymene pathway in Pseudomonas putida: ring cleavage of 2,3-dihydroxy-p-cumate and subsequent reactions. J. Bacteriol. 129: 1365–1375 Google Scholar
Duggleby, CJ & Williams, PA (1986) Purification and some properties of the 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase (2-hydroxymuconic semialdehyde hydrolase) encoded by the TOL plasmid pWWO from Pseudomonas putida mt 2. J Gen Microbiol 132: 717–726 Google Scholar
Dunn, NW & Gunsalus, IC (1973) Transmissible plasmid coding for the early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114: 974–979 Google Scholar
Durham, DR & Stewart, DB (1987) Recruitment of naphthalene dissimilatory enzymes for the oxidation of 1,4-dichloronaphthalene to 3,6-dichlorosalicylate, a precursor of the herbicide Dicamba. J. Bacteriol. 169: 2889–2892 Google Scholar
Dzhusupova, DB, Baskunov, BP, Golovleva, LA, Alieva, RM & Ilyaletdinov, AN (1985) Peculiarities of the oxidation of α-methylstyrene by bacteria of the genus Pseudomonas. Mikrobiologiya 54: 136–140 Google Scholar
Eaton, RW & Timmis, KN (1986) Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE 204. J Bacteriol 168: 123–131 Google Scholar
Evans, WC & Fuchs, G (1988) Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol 42: 289–317 Google Scholar
Foght, JM, Fedorak, PM & Westlake, DWS (1990) Mineralization of [14C]hexadecane and [14C]phenanthrene in crude oil: Specificity amoung bacterial isolates. Can. J. Microbiol 36: 169–175 Google Scholar
Franklin, FCH, Bagdasarian, M, Bagdasarian, MM & Timmis, KN (1981) Molecular and functional analysis of TOL plasmid pWWO from Pseudomonas putida and cloning of the entire regulated aromatic ring meta cleavage pathway. Proc. Acad. Sci. USA 78: 7458–7462 Google Scholar
Furukawa, K & Suzuki, H (1988) Gene manipulation of catabolic activities for production of intermediates of various biphenyl compounds. Appl. Microbiol. Biotechnol. 29: 363–369 Google Scholar
Gibson, DT (1971) The microbial oxidation of aromatic compounds. Crit. Rev. Microbiol. 1: 199–223 Google Scholar
Gibson, DT, Koch, JR & Kallio, RE (1968) Oxidative degradation of aromatic hydrocarbons by micro-organisms. I Enzymatic formation of catechol from benzene. Biochemistry 7: 2643–2656 Google Scholar
Gibson, DT, Cardini, GE, Maesels, FC & Kallio, RE (1970) Incorporation of 18O into benzene. Biochemistry 9: 1631–1635 Google Scholar
Gibson, DT, Roberts, RL, Wells, MC & Kobal, VM (1973) Oxidation of biphenyl by a Beijerincki species. Biochem. Biophys. Res. Commun. 50: 211–219 Google Scholar
Gibson, DT, Gschwendt, B, Yeh, WK & Kobal, VM (1973) Initial reaction in the oxidation of ethylbenzene by Pseudomonas putida. Biochemistry 12: 1520–1528 Google Scholar
Gibson, DT, Mahadevan, V & Davey, JF (1974) Bacterial metabolism of _p_- and _m_-xylene: Oxidation of the aromatic ring. J. Bacteriol. 119: 930–936 Google Scholar
Gibson, DT & Subramanian, V (1984) Microbial Degradation of aromatic hydrocarbons. In: Gibson, DT (Ed) Microbial Degradation of Organic Compounds (pp 361–369). Marcel Dekker New York Google Scholar
Hartmans, S, Smits, JP, van der Werf, MJ, Volkering, F & de Bont, JAM (1989) Metabolism of styrene oxide ande 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl. Environ. Microbiol. 55: 2850–2855 Google Scholar
Hartmans, S, van der Werf, MJ & de Bont, JAM (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56: 1347–1351 Google Scholar
Heitkamp, MA & Cerniglia, CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612–1614 Google Scholar
Högn, T & Jaenicke, L (1972) Benzene metabolism of Moraxella sp. Eur. J. Biochem. 30: 369–375 Google Scholar
Hooper, DJ (1978) Microbial degradation of aromatic hydrocarbons. In: Watkinson, RJ (Ed) Developments in the Biodegradation of Hydrocarbons (pp 85–112). Applied Science Publishers, London Google Scholar
Ishigooka, H, Yashida, Y, Omori, T & Minoda, Y (1986) Enzymatic dioxygenation of biphenyl 2,3-diol and 3-isopropylcatechol. Agric. Biol. Chem. 50: 1045–1046 Google Scholar
Jigami, Y, Omori, T & Minoda, Y (1974a) A new ring fission product suggestive of a unknown reductive step in the degradation of n-butylbenzene by Pseudomonas. Agric. Biol. Chem. 38: 1757–1759 Google Scholar
Jigami, Y, Omori, T, Minoda, Y & Yamada, K (1974b) Formation of of 3-ethylsalicylic acid from 3-ethyltoluene by Pseudomonas ovalis. Agric. Biol. Chem. 38: 467–469 Google Scholar
Jigami, Y, Omori, T & Minoda, Y (1975) The degradation of isopropylbenzene and isobutylbenzene by Pseudomonas sp. Agric. Biol. Chem. 39: 1817–1788 Google Scholar
Khan, AA & Walia, SK (1990) Identification and localization of 3-phenylcatechol dioxygenase and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase genes of Pseudomonas putida and expression in Eschericha coli. Appl. Environ. Microbiol. 56: 956–962 Google Scholar
Kunz, DA & Chapman, PJ (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. J. Bacteriol. 146: 179–191 Google Scholar
Laflamme, RE & Hite, RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim. Cosmomchim. Acta. 42: 289–303 Google Scholar
Ley, SV, Sternfeld & Taylor, SC (1987) Microbiol Oxidation in synthesis: a six step preparation of (+)-pinitol from benzene. Tetrahydron Lett. 28: 225–226 Google Scholar
Lovley, DR & Lonergan, DJ (1990) Anaerobic oxidation of toluene, phenol and _p_-cresol by the dissimilatory iron-reducting organism, GS-15. Appl. Environ Microbiol. 56: 1858–1864 Google Scholar
Lunt DO & Evans WC (1970) The microbial metabolism of biphenyl. Biochem J 118: 54P
Marr, EK & Stone, RW (1961) Bacterial oxidation of benzene. J. Bacteriol. 85: 425–430 Google Scholar
McCarty, PL, Rittmann, BE & Bouwer, EJ (1984) Microbial processes affecting chemical transformations in groundwater. In: Bitton, G & Gerba, CP (Eds) Groundwater Pollution Micobiology (pp 89–115). John Wiley & Sons, New York Google Scholar
Mueller, JG, Chapman, PJ, Blattmann, BO & Pritchard, PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ. Microbiol. 56: 1079–1086 Google Scholar
Nakazawa, T, Inouye, S & Nakazawa, A (1980) Physical and functional analysis of RP4-TOL plasmid recombinants: Analysis of insertion and deletion mutants. J. Bacteriol. 144: 222–231 Google Scholar
Omori, T, Jigami, Y & Minoda, Y (1974) Microbial oxidation of α-methylstyrene and β-methylstyrene. Agric. Biol. Chem. 38: 409–415 Google Scholar
Omori, T, Ishigooka, H & Minoda, Y (1986) Purification and some properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HODPA) reducing enzyme from Pseudomonas cruciviae S93B1, involved in the degradation of biphenyl. Agric. Biol. Chem. 50: 1513–1518 Google Scholar
Ramos, JL, Mermod, N & Timmis, KN (1987) Regulatory circuits controlling transcription of TOL plasmid operon encoding _meta_-cleavage pathway for degradation of alkylbenzoates by Pseudomonas. Mol. Microbiol. 1: 293–300 Google Scholar
Sala-Trepat, JM, Murray, K & Williams, PA (1972) The metabolic divergence in the meta cleavage pathway of catechols by Pseudomonas putida NCIB 10015. Eur. J. Biochem. 28: 347–356 Google Scholar
Sariaslani, FS, Harper, DB & Higgins, IJ (1974) Microbial degradation of hydrocarbons. Biochem. J. 140: 31–45 Google Scholar
Schell, MA (1986) Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. USA 83: 369–373 Google Scholar
Schell, MA & Wender, PE (1986) Indentification of the nahR genee product and nucleotide sequence required for its activation of the sal operon. J. Bacteriol. 166: 9–14 Google Scholar
Schraa, G, Bethe, BM, van Neerven, ARW, van den Tweel, WJJ, van der Wende, E & Zehnder, AJB (1987) Degradation 1,2-dimethylbenzene by Corynebacterium strain C125. Antonie van Leewenhoek 53: 159–170 Google Scholar
Schwartz, RD (1981) A novel reaction: meta hydroxylation of biphenyl by an actinomycete. Enzyme Microbial Technol. 3: 158–159 Google Scholar
Shirai, K (1986) Screening microorganisms for catechol production from benzene. Agric. Biol. Chem. 50: 2875–2880 Google Scholar
Shirai, K (1987) Catechol production from benzene through reaction with resting and immobilized cells of a mutant strain of Pseudomonas. Agric. Biol. Chem. 51: 121–128 Google Scholar
Shirai, K & Hisatsuka, K (1979) Isolation and identification of styrene assimiliating bacteria. Agric. Biol. Chem. 43: 1595–1596 Google Scholar
Simpson, HD, Green, J & Dalton, H (1987) Purification and some properties of a novel heat-stable _cis_-toluene dihydrodiol dehydrogenase. Biochem. J. 244: 585–590 Google Scholar
Sielicki, M, Focht, DD & Martin, JP (1978) Microbial transformations of styrene and [14C]styrene in soil and enrichment cultures. Appl. Environ. Microbiol. 35: 124–128 Google Scholar
Smith, MR & Ratledge, C (1989a) Catabolism of alkylbenzenes by Pseudomonas sp. NCIB 10643. Appl. Microbiol. Biotechnol. 32: 68–75 Google Scholar
Smith, MR & Ratledge, C (1989b) Catabolism of biphenyl by Pseudomonas sp. NCIB 10643 and Nocardia sp. NCIB 10503. Appl. Microbiol. Biotechnol. 30: 395–401 Google Scholar
Smith MR, Ewing M & Ratledge C (1991) The interactions of various aromatic substrates degraded by Pseudomonas sp. NCIB 10643: Synergistic inhibition of growth by two compounds which serve as growth substrates. Appl. Micobiol. Biotechnol. (in press)
Starovoitov, II, Selfionov, SA, Nefedova, MY & Adanin, VM (1986) Catabolism of diphenyl by Pseudomonas putida strain BS893 containing biodegradation plasmid pBS241. Microbiology (Engl. Transl.) 54: 726–727 Google Scholar
van den Tweel, WJJ, Janssens & de Bont, JAM (1986) Degradation of 4-hydroxyphenylacetate by Xanthobacter 124X. Antonie van Leeuwenhoek 52: 309–318 Google Scholar
van den Tweel, WJJ, Vorage, MJAW, Marsman, EH, Koppejan, J, Tramper, J & de Bont, JAM (1988) Continuous production of _cis_-1,2-dihydroxycyclohexa-3,5-diene (_cis_-benzeneglycol) from benzene by a mutant of a benzene degrading Pseudomonas sp. Enzyme Microbial Technol. 10: 134–142 Google Scholar
Vecht, SE, Platt, MW, Er-El, Z & Goldberg, I (1988) The growth of Pseudomonas putida on _m_-toluic acid and on toluene in batch and chemostat cultures. Appl. Microbiol. Biotechnol. 27: 587–592 Google Scholar
Weissenfels, WD, Beyer, M & Klein, J (1990) Degradation of fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32: 479–484 Google Scholar
Wigmore, GJ, Bayley, RC & Di Berardino, D (1974) Pseudomonas putida mutants defective in the catabolism of the products of meta fission of catechol and its methyl analogues. J. Bacteriol. 120: 31–37 Google Scholar
Winstanley, C, Taylor, SC & Williams, PA (1987) pWW174: A large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the β-ketoadipate pathway. Mol. Microbiol. 1: 219–227 Google Scholar
You, IS & Gunsalus, IC (1986) Regulation of the nah and sal operons of plasmid NAH7: Evidence for a new function in nahR. Biochem. Biophys. Res. Commun. 141: 986–992 Google Scholar
You, IS, Ghosal, D & Gunsalus, IC (1988) Nucleotide sequence of plasmid NAH7 gene nahR and DNA binding of the nahR product. J. Bacteriol. 170: 5409–5415 Google Scholar
Zeyer, J, Eicher, P, Dolfing, J & Schwarzenbach, RP (1990) Anaerobic degradation of aromatic compounds. In: Kamely, D, Chakrabarty, A & Omenn, GS (Eds) Biotechnology and Biodegradation (pp 33–40). Gulf Publishing Company, Houston Google Scholar