Molecular oncology in pancreatic cancer (original) (raw)
References
Gudjonsson B (1987) Cancer of the pancreas: 50 years of surgery. Cancer 60:2284–2303 CASPubMed Google Scholar
Beger HG, Büchler M, Friess H (1994) Chirurgische Ergebnisse und Indikation zu adjuvanten Maßnahmen beim Pankreaskarzinom. Chirurg 65:246–252 CASPubMed Google Scholar
Hollywood DP, Barton CM (1993) Oncogenes and tumor suppressor genes. In: Lemoine NR, Neoptolemos JP, Cooke T (eds) Cancer: a molecular approach. Blackwell Scientific, Oxford, pp 2–41 Google Scholar
Safi F, Beger HG, Bittner R, Büchler M, Krautzberger W (1986) CA19–9 and pancreatic adenocarcinoma. Cancer 57:779–783 Google Scholar
Pleskow DK, Berger HJ, Gyves J, Allen E, McLean A, Podosky K (1989) Evaluation of a serologic marker, CA19–9, in the diagnosis of pancreatic cancer. Ann Intern Med 110:704–709 Google Scholar
Safi F, Roscher R, Beger HG (1989) Tumor markers in pancreatic cancer. Sensitivity and specificity of CA 19–9. Hepatogastroenterology 36:419–423 Google Scholar
Kübel R, Büchler M, Bosslet K, Baczaco K, Beger HG (1987) Immunohistochemical analysis of new monoclonal antibodies for pancreatic carcinoma associated antigens. In: Klapdor R (ed) New tumor markers and their monoclonal antibodies. Thieme. Stuttgart, pp. 354–358 Google Scholar
Longenecker BM, Willans DJ, MacLean GD, Selvaraj S, Suesh MR, Noujaim AA (1987) Monoclonal antibodies and synthetic tumor-associated glycoconjugates in the study of expression of Thomsen-Friedenreich-like and Tn-like antigens to human cancers. J Natl Cancer Inst 78:489–496 Google Scholar
Friess H, Buchler M, Auerbach B, Weber A, Malfertheiner P, Hammer K, Madry N, Greiner S, Bosslet K, Beger HG (1993) CA 494- a new tumor marker for the diagnosis of pancreatic cancer. Int J Cancer 53:759–763 Google Scholar
Podolsky K, McPhee MS, Alpert E, Warshaw AL, Isselbacher KJ (1981) Galactosyltransferase isoenzyme II in the detection of pancreatic cancer: comparison with radiologic, endoscopic and serologic tests. N Eng J Med 304. 1313–1317 Google Scholar
Russo AJ, Douglass HO, Leveson SH, Howell JH, Holyoke ED, Harvey SR, Chu TM, Goldrosen MH (1978) Evaluation of microleukocyte adherence inhibition assay as an immunodiagnostic test for pancreatic cancer. Cancer Res 38:2023–2039 Google Scholar
Gelder FB, Reese CJ, Moossa AR, Hall T, Hunter R (1978) Purification, partial characterization and clinical evaluation of a pancreatic oncofetal antigen. Cancer Res 38:313–324 Google Scholar
Warshaw AL, Lee KH, Wood WC, Cohen AM (1980) Sensitivity and specificity of serum ribonuclease in the diagnosis of pancreatic cancer. Am J Surg 139:27–32 Google Scholar
Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M (1993) Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 13:565–569 CASPubMed Google Scholar
Hall PA, Hughes CM, Staddon SL, Richman PL, Gullick WJ, Lemoine NR (1990) The c-erbB-2 proto-oncogene in human pancreatic cancer. J Pathol 161:195–200 Google Scholar
Lemoine NR, Lobresco M, Leung H, Barton C, Hughes CM, Prigent SA, Gullick WJ, Kloppel G (1992) The erbB-3 gene in human pancreatic cancer. J Pathol 168:269–273 Google Scholar
Korc M, Meltzer P, Trent J (1986) Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proc Natl Acad Sci U S A 83:5141–5144 Google Scholar
Lemoine NR, Hughes CM, Barton CM, Poulsom R, Jeffery RE, Klöppel G, Hall PA, Gullick WJ (1992) The epidermal growth factor receptor in human pancreatic cancer. J Pathol 166:7–12 CASPubMed Google Scholar
Libermann TA, Razon N, Bartal AD, Yarden Y, Schlessinger J, Soreq H (1984) Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44:753–760 Google Scholar
Ro J, North SM, Gallick GE, Hortobagyi GN, Guttermann JU, Blick M (1987) Amplified and overexpressed epidermal growth factor receptor gene in uncultured primary breast carcinoma. Cancer Res 48:161–164 Google Scholar
Sainsbury JRC, Sherbet GV, Fardon JR, Harris AL (1985) Epidermal-growth-factor-receptors in human brain tumors. Lancet I:364–366 Google Scholar
Neal DE, Bennett MK, Hall RR, Marsch C, Abel PD, Sainsbury JRC, Harris AL (1985) Epidermal-growth-factor-receptors in human bladder cancer: comparison of invasive and superficial tumors. Lancet I:366–368 Google Scholar
Watanabe S, Lazar SE, Sporn MB (1987) Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type alpha transforming growth factor gene. Proc Natl Acad Sci USA 84:1258–1262 Google Scholar
Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchler M, Beger HG (1992) Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 90:1352–1360 Google Scholar
Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR (1991) Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J Pathol 163:111–116 Google Scholar
Smith JJ, Derynck R, Korc M (1987) Production of transforming growth factor a in human pancreatic cancer cells, evidence for a superagonist autocrine cycle. Proc Natl Acad Sci USA 84:7567–7570 Google Scholar
Massague J (1990) The transforming growth factor family. Annu Rev Cell Biol 6:597–641 CASPubMed Google Scholar
Sporn MB, Roberts AB (1992) Transforming growth factor: recent progress and new challenges. J Cell Biol 119:1017–1021 ArticleCASPubMed Google Scholar
Baldwin RL, Korc M (1993) Growth inhibition of human pancreatic carcinoma cells by transforming growth factor-b. Growth Factors 8:23–34 Google Scholar
Yamanaka Y, Friess H, Buchler M, Beger HG, Gold LI, Korc M (1993) Synthesis and expression of transforming growth factor beta-1, beta-2, and beta-3 in the endocrine and exocrine pancreas. Diabetes 42:746–756 Google Scholar
Friess H, Yamanaka Y, Buchler M, Ebert M, Beger HG, Gold LI, Korc M (1993) Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 105:1846–1856 CASPubMed Google Scholar
Friess H, Yamanaka Y, Büchler M, Beger HG, Kobrin MS, Baldwin RL, Korc M (1993) Enhanced expression of the type II transforming growth factor b receptor in human pancreatic cancer cells without alterations of type III receptor expression. Cancer Res 53:2704–2707 CASPubMed Google Scholar
Klagsbrun M (1989) The fibroblast growth factor family: structural and biological properties. Prog Growth Factor Res 1:207–235 Google Scholar
Gospodarowicz D, Neufeld G, Schweigerer L (1986) Molecular and biological characterization of fibroblast growth factor, an angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Differen 19:1–17 Google Scholar
Gonzales AM, Buscaglia M, Fox R, Isacchi A, Sarmientos P, Farris J, Ong M, Martineau D, Lappi DA, Baird A (1992) Basic fibroblast growth factor in Dupuytren's contracture. Am J Pathol 141:661–671 Google Scholar
Mori H, Maki M, Oishi K, Jaye M, Igarashi K, Yoshida O, Hatanaku M (1990) Increased expression of genes for basic fibroblast growth factor and transforming growth factor type b2 in human benign prostatic hyperplasia. Prostate 16:71–80 Google Scholar
Friess H, Yamanaka Y, Buchler M, Beger HG, Do DA, Kobrin MS, Korc M (1994) Increased expression of acidic and basic fibroblast growth factors in chronic pancreatitis. Am J Pathol 144:117–128 Google Scholar
Takahashi JA, Mod H, Fukumoto M, Igarashi M, Jaye M, Oda Y, Kikuchi H, Hatanaka M (1990) Gene expression of fibroblast growth factors in human gliomas and meningeomas. Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc Natl Acad Sci USA 87:5710–5714 Google Scholar
Yamanaka Y, Friess H, Buchler M, Beger HG, Uchida E, Onda M, Kobrin MS, Korc M (1993) Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res 53:5289–5296 Google Scholar
Der CJ, Cox AD (1991) Isoprenoid modification and plasma membrane association: critical factors for ras oncogenicity. Cancer Cells 3:331–339 Google Scholar
Almoguera C, Shibta D, Forrester K, Martin J, Arnheim N, Perucho, M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554 CASPubMed Google Scholar
Lemoine NR, Jain S, Hughes CM, Staddon SL, Maillet B, Hall PA, Klöppel G (1992) Ki-ras oncogene activation in preinvasive pancreatic cancer. Gastroenterology 102:230–236 Google Scholar
DiGiuseppe JA, Hruban RH, Offerhaus GJ, Clement MJ, Van den Berg FM, Cameron JL, Van Mansfeld AD (1994) Detection of K-ras mutations in mucinous pancreatic duct hyperplasia from a patient with a family history of pancreatic carcinoma. Am J Pathol 144:889–895 Google Scholar
Grünewald K, Lyons J, Fröhlich A, Feichtinger H, Weger RA, Schwab G, Janssen JWG, Bartram CR (1989) High frequency of Ki-ras codon 12 mutations in pancreatic adenocarcinomas. Int J Cancer 43:1037–1041 Google Scholar
Hruban RH, van Mansfeld ADM, Offerhaus GJA, van Weering DK, Allison DC, Goodman SN, Kensler TW, Bose KK, Cameron JL, Bos JL (1993) K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 143:545–554 Google Scholar
Motojima K, Urano T, Nagata Y, Shiku H, Tsunoda T, Kanematsu T (1991) Mutations in the Kirsten-ras oncogene are common but lack correlation with prognosis and tumor stage in human pancreatic carcinoma. Am J Gastroenterol 86:1784–1788 CASPubMed Google Scholar
Schaeffer BK, Glasner S, Kuhlmann E, Myles JL, Longnecker DS (1994) Mutated c-K-ras in small pancreatic adenocarcinomas. Pancreas 9:161–165 Google Scholar
Pellegata NS, Sessa F, Renault B, Bonato M, Leone BE, Solcia E, Ranzani GN (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54:1556–1560 Google Scholar
Kloppel G (1994) Gene changes and pancreatic carcinoma: the significance of K-ras. Dig Surg I 1:164–169 Google Scholar
Barton CM, Staddon SL, Hughes CM, Hall PA, O'Sullivan C, Kloppel G, Theis B, Russell RCG, Neoptolemos J, Williamson RCN, Lane DP, Lemoine NR (1991) Abnormalities of the p53 tumor suppressor gene in human pancreatic cancer. Br J Cancer 64:1076–1082 CASPubMed Google Scholar
Ruggeri B, Zhang SY, Caamano J, DiRado M, Flynn SD, Klein-Szanto AJP (1992) Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor suppressor genes. Oncogene 7:1503–151 1 Google Scholar
Casey G, Yamanaka Y, Friess H, Kobrin MS, Lopez ME, Buchler M, Beger HG, Korc M (1993) p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Lett 69:151–160 Google Scholar
Kalthoff H, Schmiegel W, Roeder C, Kasche D, Schmidt A, Lauer G, Thiele HG, Honold G, Pantel K, Riethmüller G, Scherer E, Maner J, Deppert W (1993) p53 and K-RAS alterations in pancreatic epithelial cell lesions. Oncogene 8:289–298 CASPubMed Google Scholar
Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Lacono C, Hirohashi S (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 142:1534–1543 Google Scholar
Zhang SY, Ruggeri B, Agarwal P, Sorling AF, Obara T, Ura H, Namiki M, Klein-Szanto AJP (1994) Immunohistochemical analysis of p53 expression in human pancreatic carcinomas. Arch Pathol I 18:150–154 Google Scholar
DiGiuseppe JA, Hruban RH, Goodman SN, Polak M, Van den Berg FM, Allison DC, Cameron JL, Offerhaus GJA (1994) Overexpression of p53 protein in adenocarcinoma of the pancreas. Am J Clin Pathol 101:684–688 Google Scholar
Boschmann CR, Stryker S, Reddy JK, Ras MS (1994) Expression of p53 protein in precursor lesions and adenocarcinoma of the human pancreas. Am J Pathol 145:1291–1295 Google Scholar
Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTSI) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32 Google Scholar
Liu Q, Yan YX, McClure M, Natagawa H, Fujimura F, Rustgi AK (1995) MTSI (CDKN2) tumor suppressor gene deletions are a frequent event in esophagus squamous cancer and pancreatic adenocarcinoma cell lines. Oncogene 10:619–622 Google Scholar
Barton CM, McKie AB, Hogg A, Bia B, Elia G, Phillips SMA, Ding SF, Lemoine NR (1995) Abnormalities of the RBIand DCC tumour suppressor genes are uncommon in humanpancreatic adenocarcinoma. Mol Carcinogen (in press)
McKie AB, Filipe MI, Lemoine NR (1993) Abnormalities affecting the APC and DCC tumour suppressor gene loci on chromosome 5q occur frequently in gastric cancer but not in pancreatic cancer. Int J Cancer 55:598–603 Google Scholar
Scupoli MT, Zamboni G, Achille A, Bogina G, Capalli P, Lemoine NR, Accolla RS, Scarpa A (1995) APC gene mutations frequently occur in ampullary tumors but not in exocrine pancreatic cancer. Am J Pathol (in press)
Caron de Fromentel C, Soussi T (1992) TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1–15 Google Scholar
Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancer. Science 253:49–53 CASPubMed Google Scholar
Levine AJ, Momand J Finlay CA (1991) The p53 tumour suppressor gene. Nature 351:453–456 Google Scholar
Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ (1988) Activating mutations for transformation by p53 produce a gene product that forms a hsc70-p53 complex with an altered half life. Mol Cell Biol 8:531–539 Google Scholar
Hinds PW, Finlay CA, Frey AB, Levine AJ (1987) Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-_ras_-transformed cell lines. Mol Cell Biol 7:2863–2869 Google Scholar
Kinzler KW, Vogelstein B (1994) Cancer therapy meets p53. N Eng J Med 331:49 Google Scholar
Lowe SW, Ruby HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967 Google Scholar
Harris CC, Hollstein M (1993) Clinical implications of the p53 tumor-suppressor gene. N Eng J Med 329:1318–1327 Google Scholar
Volkmann M, Müller M, Hofmann WJ, Meyer M, Hagelstein J, Räth U, Kommerell B, Zentgraf, H Galle PR (1993) The humoral immune response to p53 in patients with hepatocellular carcinoma is specific for malignancy and independent of the alpha-fetoprotein status. Hepatology 18:559–565 Google Scholar
Schlichtholz B, Legros Y, Gillet D, Gaillard C, Marty M, Lane D, Calvo F, Soussi T (1992) The immune response to p53 in breast cancer patients is directed against immunodominant epitopes unrelated to the mutational hot spot. Cancer Res 52:6380–6384 Google Scholar
Labrecque S, Naor N, Thomson D, Matlashewski G (1993) Analysis of the anti-p53 antibody response in cancer patients. Cancer Res 53:3468–3471 Google Scholar
Gansauge S, Gansauge F, Negri G, Galle P, Link KH, Poch B, Beger HG (1994) p53-autoantibodies in diseases of the pancreatico-biliary system. Pancreas 9:788 Google Scholar
Rouslahti E (1991) Integrins. J Clin Invest 87:1–5 Google Scholar
Arnaout B (1990) Structure and function of the leukocyte adhesion molecules CD I I/CD 1 8. Blood 75:1037–1050 Google Scholar
Waes CV, Kozarsky KF, Warren AB, Kidd L, Paugh D, Liebert M, Carey TE (1991) The A9 antigen associated with aggressive human squamous carcinoma is structurally and functionally similar to the newly defined integrin a6b4. Cancer Res 51:2395–2402 Google Scholar
Lehmann M, Rabenandresana C, Tamura R, Lissitzky JC, Quaranta V, Pichon J Marvaldi J (1994) A monoclonal antibody inhibits adhesion to fibronectin and vitronectin of a colon carcinoma cell line and recognizes the integrins αvβ3, αvβ5, and αvβ6. Cancer Res 54:2102–2107 Google Scholar
Abrahamson DR (1986) Recent studies on the structure and pathology of basement membranes. J Pathol 149:257–278 Google Scholar
D'Ardenne AJ, Burns J, Sykes BC, Kirkpatric P (1983) Comparative distribution of fibronectin and type III collagen in normal human tissues. J Pathol 141:55–69 Google Scholar
Preissner KT (1991) Structure and biological role of vitronectin. Annu Rev Cell Biol 7:275–310 CASPubMed Google Scholar
Liottta LA (1986) Tumor invasion and metastases — role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res 46:1–7 Google Scholar
Shimoyama S, Gansauge F, Gansauge S, Oohara T, Beger HG (1995) Altered expression of extracellular matrix molecules and their receptors in chronic pancreatitis and pancreatic adenocarcinoma in comparison to normal pancreas. Int J Pancreatol (in press)
Johnston PG, Lenz HJ, Leichman CG, Dananberg KD, Allegra CJ, Danenberg PV, Leichman L (1995) Thymidilate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 55:1407–5105 CASPubMed Google Scholar
Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G, Diehl D, Schlenk R, Coy J, Stilgenbauer S (1995) p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85:1580–1589 Google Scholar
Wattel E, Preudhomme C, Hecquet B, Vanrumbeke M, Quesnel B, Dervite I, Morel P, Fenaux P (1994) p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood 84:3148–3157 Google Scholar
Van der Zee AG, Hollema H, Suurmeijer AJ, Krans M, Sluiter WJ, Willemse PH, Aalders JG, de Vries EG (1995) Value of P-glycoprotein, glutathione 5-transferase pi, c-erbB-2, and p53 as prognostic factors in ovarian carcinomas. J Clin Oncol 13:70–78 Google Scholar
Jacquemier J, Penault-Llorca F, Viens P, Houvenaeghel G, Hassoun J, Torrente M, Adelaide J, Birnbaum D (1994) Breast cancer response to adjuvant chemotherapy in correlation with erbB2 and p53 expression. Anticancer Res 14:2773–2778 Google Scholar
Niwa K, Itoh M, Murase T, Morishita S, Itoh N, Mori H, Taaya T (1994) Alteration of p53 gene in ovarian carcinoma: clinicopathological correlation and prognostic significance. Br J Cancer 70:1191–1197 Google Scholar
Lemoine NR (1994) Genetic intervention for therapy and prevention of pancreatic cancer Dig Surg I 1:170–177 Google Scholar
Huang HJ, Yee JK, Shew JY, Chen PL, Bookstein R, Friedmann T, Lee EY, Lee WH (1988) Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242:1563–1566 Google Scholar
Bookstein R, Shew JY, Chen PL, Scully P, Lee WH (1990) Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247:712–715 Google Scholar
Tanaka K, Oshimura M, Kikuchi R, Seki M, Hayashi T, Miyaki M (1991) Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature 349:340–342 Google Scholar
Baker SJ, Markowitz S, Fearon ER, Willson JKV, Vogelstein B (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915 Google Scholar
Carter G, Lemoine NR (1993) Antisense technology for cancer therapy: does it make sense? Br J Cancer 67:869–876 Google Scholar
Nellen W, Lichtenstein C (1993) What makes an mRNA antisense-itive? Trends Biol Sci 18:419–423 Google Scholar
Prins J, DeVries E, Mulder N (1993) Antisense of oligonucleotides and the inhibition of oncogene expression. Clin Oncol 5:245–252 Google Scholar