Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex (original) (raw)
Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29: 775 PubMedCAS Google Scholar
Albus K (1975) A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp Brain Res 24: 159–179 ArticlePubMedCAS Google Scholar
Baughman RW, Gilbert CD (1981) Aspartate and glutamate as possible neurotransmitters in the visual cortex. J Neurosci 1: 427–439 PubMedCAS Google Scholar
Bullier J, Kennedy H, Salinger W (1984) Branching and laminar origins of projections between visual cortical areas in the cat. J Comp Neurol 228: 329–341 ArticlePubMedCAS Google Scholar
Creutzfeldt OD, Maekawa K, Hösli L (1969) Forms of spontaneous and evoked postsynaptic potentials of cortical nerve cells. Progr Brain Res 31: 265–273 ArticleCAS Google Scholar
Creutzfeldt OD, Kuhnt U, Benevento L (1974a) An intracellular analysis of visual cortical neurones to moving stimuli: responses in a co-operative neuronal network. Exp Brain Res 21: 251–274 PubMedCAS Google Scholar
Creutzfeldt OD, Innocenti GM, Brooks D (1974b) Vertical organization in the visual cortex (area 17). Exp Brain Res 21: 315–336 PubMedCAS Google Scholar
Creutzfeldt OD, Garey LJ, Kuroda R, Wolff J-R (1977) The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp Brain Res 27: 419–440 ArticlePubMedCAS Google Scholar
Diamond J, Gray EG, Yasargil GM (1970) The function of the dendritic spine: an hypothesis. In: Anderson P, Jansen JKS (eds) Excitatory synaptic mechanisms. Universitets Forlaget, Oslo, pp 213–222 Google Scholar
Emson PC, Lindvall O (1979) Distribution of putative neurotransmitters in the neocortex. Neuroscience 4: 1–30 ArticlePubMedCAS Google Scholar
Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex: cellular components of the cerebral cortex, Vol. I. Plenum Press New York London, pp 123–200 Google Scholar
Ferster D, Lindström S (1983) An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J Physiol 342: 181–215 PubMedCAS Google Scholar
Ferster D, Lindström S (1985) Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of corticogeniculate cells. J Physiol 367: 233–252 PubMedCAS Google Scholar
Fisken RA, Garey LJ, Powell TPS (1975) The intrinsic association and comissural connections of area 17 of the visual cortex. Philos Trans R Soc Lond B 272: 487–536 ArticleCAS Google Scholar
Freund TF, Martin KAC, Smith AD, Somogyi P (1983) Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axo-axonic cells and of presumed basket cells in synaptic contact with pyramidal cells of the cat's visual cortex. J Comp Neurol 221: 263–278 ArticlePubMedCAS Google Scholar
Freund TF, Martin KAC, Somogyi P, Whitteridge D (1985) Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. IL Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. J. Comp Neurol 242: 275–291 ArticlePubMedCAS Google Scholar
Friedlander MJ, Lin C-S, Sherman SM (1979) Structure of physiologically identified X and Y cells in the cat's lateral geniculate nucleus. Science 204: 1114–1117 ArticlePubMedCAS Google Scholar
Gilbert CD (1985) Horizontal integration in the neocortex. Trends Neurosci 8: 160–165 Article Google Scholar
Gilbert CD, Kelly JP (1975) The projections of cells in different layers of the cat's visual cortex. J Comp Neurol 163: 81–106 ArticlePubMedCAS Google Scholar
Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280: 120–125 ArticlePubMedCAS Google Scholar
Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3: 1116–1133 PubMedCAS Google Scholar
Hanker JS, Yates PE, Metz CB, Rustioni A (1977) A new specific, sensitive and non-carcinogenic agent for the demonstration of horseradish peroxidase. Histochem J 9: 789–792 ArticlePubMedCAS Google Scholar
Hodgson AJ, Penke B, Erdei A, Chubb IW, Somogyi P (1985) Antiserum to γ-amino-butyric acid. I. Production and characterisation using a new model system. J Histochem Cytochem 33: 229–239 PubMedCAS Google Scholar
Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160: 106–154 PubMedCAS Google Scholar
Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat's striate cortex. J Physiol 165: 559–568 PubMedCAS Google Scholar
Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195: 215–243 PubMedCAS Google Scholar
Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198: 1–59 PubMedCAS Google Scholar
Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Oxford University Press, Oxford, pp 197–222 Google Scholar
Landry P, Labelle A, Deschenes M (1980) Intracortical distribution of axonal collaterals of pyramidal tract cells in the cat motor cortex. Brain Res 191: 327–336 ArticlePubMedCAS Google Scholar
Lorente de Nó R (1922) La corteza cerebral del raton. I. La corteza acustica. Trab Lab Invest Biol Univ Madrid. 20: 41–78 Google Scholar
Lund JS (1973) Organisation of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147: 455–496 ArticlePubMedCAS Google Scholar
Lund JS (1984) Spiny stellate neurons. In: Peters A, Jones EG (eds) Cerebral cortex, cellular components of the cerebral cortex, Vol. I. Plenum Press, New York London, pp 255–308 Google Scholar
Lund JS, Boothe R (1975) Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. J Comp Neurol 159: 305–334 Article Google Scholar
Lund JS, Henry GH, Mac Queen CL, Harvey AR (1979) Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. J Comp Neurol 184: 599–618 ArticlePubMedCAS Google Scholar
Martin KAC (1984) Neuronal circuits in cat striate cortex. In: Jones EG, Peters A (eds) Cerebral cortex, functional properties of cortical cells, Vol II. Plenum Press, New York London, pp 241–284 Google Scholar
Martin KAC, Somogyi P (1985) Local excitatory circuits in area 17 of the cat. In: Rose D, Dobson VG (eds) Models of the visual cortex. John Wiley & Sons New York, pp 504–513 Google Scholar
Martin KAC, Somogyi P, Whitteridge D (1983) Physiological and morphological properties of identified basket cells in the cat's visual cortex. Exp Brain Res 50: 193–200 ArticlePubMedCAS Google Scholar
Martin KAC, Whitteridge D (1984) Form, function, and intracortical projections of spiny neurones in the striate visual cortex of the cat. J Physiol (Lond) 353: 463–504 CAS Google Scholar
Matsubara J, Cynader M, Swindale NV, Stryker MP (1985) Intrinsic projections within visual cortex: evidence for orientation-specific local connections. Proc Natl Acad Sci USA 82: 935–939 ArticlePubMedCAS Google Scholar
McGuire BA, Gilbert CD, Wiesel TN (1985) Ultrastructural characterization of long-range clustered horizontal connections in monkey striate cortex. Soc Neurosci Abstr 11: 17 Google Scholar
McGuire BA, Hornung J-P, Gilbert CD, Wiesel TN (1984) Patterns of synaptic input to layer 4 of cat striate cortex. J Neurosci 4: 3021–3033 PubMedCAS Google Scholar
Mitchinson G, Crick F (1982) Long axons within the striate cortex — their distribution, orientation, and patterns of connection. Proc Natl Acad Sci USA 79: 3661–3665 Article Google Scholar
Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex (A17 and A18): a current source density analysis of electrically evoked potentials. Exp Brain Res 33: 371–394 ArticlePubMedCAS Google Scholar
Mitzdorf J, Singer W (1979) Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. J Comp Neurol 187: 71–84 ArticlePubMedCAS Google Scholar
Nelson JI, Frost BJ (1985) Intracortical facilitation among co-orientated co-axially aligned simple cells in cat striate cortex. Exp Brain Res 61: 54–61 ArticlePubMedCAS Google Scholar
Noda T, Yamamoto T (1984) Response properties and morphological identification of neurons in the cat motor cortex. Brain Res 306: 197–206 ArticlePubMedCAS Google Scholar
Peters A, Saint-Marie RL (1984) Smooth and sparsely spinous nonpyramidal cells forming local axonal plexuses. In: Peters A, Jones EG (eds) Cerebral cortex: cellular components of the cerebral cortex, Vol I. Plenum Press New York London, pp 419–445 Google Scholar
Phillips CG (1959) Actions of antidromic pyramidal volleys on single Betz cells in the cat. QJ Exp Physiol 44: 1–25 CAS Google Scholar
Pongracz F (1985) The function of dendritic spines: a theoretical study. Neuroscience 15: 933–946 ArticlePubMedCAS Google Scholar
Ramón y Cajal S (1899) Estudios sobre la corteza cerebral humana. Corteza visual. Rev Trim Microgr 4: 1–63 Google Scholar
Ribak CE (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase J Neurocytol 7: 461–478 ArticlePubMedCAS Google Scholar
Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215: 1532–1534 ArticlePubMedCAS Google Scholar
Rockland KS, Lund JS, Humphrey AL (1982) Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis). J Comp Neurol 209: 41–58 ArticlePubMedCAS Google Scholar
Scheibel ME, Scheibel AB (1970) Elementary processes in selected thalamic and cortical subsystems — the structural substrates. In: Schmitt FO (eds) The neurosciences second study program. The Rockefeller University Press, New York, pp 443–457 Google Scholar
Segraves MA, Innocenti GM (1985) Comparison of the distributions of ipsilaterally and contralaterally projecting corticocortical neurons in cat visual cortex using two fluorescent tracers. J Neurosci 5: 2107–2118 PubMedCAS Google Scholar
Sholl DA (1955) The organization of the visual cortex in the cat. J Anat 89: 33–46 PubMedCAS Google Scholar
Sillito AM (1979) Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J Physiol 289: 33–53 PubMedCAS Google Scholar
Sillito AM (1984) Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex. In: Jones EG, Peters A (eds) Cerebral cortex, functional properties of cortical cells, Vol II. Plenum Press, New York London, pp 91–117 Google Scholar
Somogyi P (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: a direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience 3: 167–180 ArticlePubMedCAS Google Scholar
Somogyi P, Kisvárday ZF, Martin KAC, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10: 261–294 ArticlePubMedCAS Google Scholar
Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985a) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332: 143–149 ArticlePubMedCAS Google Scholar
Somogyi P, Hodgson AJ, Chubb IW, Penke B, Erdei A (1985b) Antiserum to γ-amino-butyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem 33: 240–248 PubMedCAS Google Scholar
Somogyi P, Hodgson AJ (1985) Antiserum to γ-amino-butyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J Histochem Cytochem 33: 249–257 PubMedCAS Google Scholar
Stefanis C, Jasper H (1964) Recurrent collateral inhibition in pyramidal tract neurones. J Neurophysiol 27: 855–877 ArticlePubMedCAS Google Scholar
Szentágothai J (1965) The use of degeneration methods in the investigation of short neuronal connexions. In: Singer M, Schade JP (eds) Degeneration patterns in the nervous system. Progress in Brain Research, Vol 14, pp 1–32
Szentágothai J (1973) Synaptology of the visual cortex. In: Jung R (ed) Handbook of sensory physiology, Vol VII. Springer, Berlin Heidelberg New York, pp 270–321 Google Scholar
Szentágothai J (1975) The ‘module-concept’ in cerebral cortex architecture. Brain Res 95: 475–496 ArticlePubMed Google Scholar
Szentágothai J (1978) The neuron network of the cerebral cortex: a functional interpretation. The Ferrier Lecture, 1977. Proc R Soc Lond B 201: 219–248 ArticlePubMed Google Scholar
Szentágothai J (1979) Local neuron circuits of the neocortex. In: Schmitt FO, Worden FG (eds) The Neurosciences Fourth Study Program, pp 399–415
Ts'o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6: 1160–1170 PubMed Google Scholar
Winfield DA, Brooke RNL, Sloper JJ, Powell TPS (1981) A combined Golgi-electron microscopic study of the synapses made by the proximal axon and recurrent collaterals of a pyramidal cell in the somatic sensory cortex of the monkey. Neuroscience 6: 1217–1230 ArticlePubMedCAS Google Scholar