Physical exercise after induced alkalosis (bicarbonate or Tris-buffer) (original) (raw)

References

  1. Asmussen, E., Klausen, K., Nielsen, L. E., Techow, O. S., Tonder, J. P.: Lactate production and anaerobic work capacity after prolonged exercise. Acta physiol. scand. 90, 731 (1974)
    Google Scholar
  2. Åstrand, P.-O., Rodahl, K.: Textbook of work physiology, p. 669. New York: McGraw-Hill 1970
    Google Scholar
  3. Beierholm, E. A., Grantham, R. N., O'Keefe, D. D., Laver, M. B., Daggett, W. M.: Effects of acid-base changes, hypoxia, and catecholamines on ventricular performances. Amer. J. Physiol. 228, 1555 (1975)
    Google Scholar
  4. Bleich, H. L., Schwartz, W. B.: Tris buffer (THAM). New Engl. J. Med. 274, 782 (1966)
    Google Scholar
  5. Bodemann, H. et al.: Unpublished results
  6. Caress, D. L., Kissack, A. S., Slovin, A. J., Stuckey, J. H.: The effect of respiratory and metabolic acidosis on myocardial contractility. J. thorac. cardiovasc. Surg. 56, 571 (1968)
    Google Scholar
  7. Cerretelli, P.: Lactacid oxygen debt in acute and chronic hypoxia. In: Exercise at altitude (R. Margaria, ed.), pp. 58–64. Amsterdam: Excerpta Medica 1967
    Google Scholar
  8. Davies, D. G., Fitzgerald, R. S., Gurtner, G. H.: Acid-base relationships between CSF and blood during acute metabolic acidosis. J. appl. Physiol. 34, 243 (1973)
    Google Scholar
  9. Del Castillo, J., Nelson, T. E., Jr., Sanchez, V.: Mechanism of the increased acetylcholine sensitivity of skeletal muscle in low pH solutions. J. cell. comp. Physiol. 59, 35 (1962)
    Google Scholar
  10. Dennig, H., Becker-Freyseng, H., Rendenback, H., Schostak, G.: Leistungssteigerung in künstlicher Alkalose bei wiederholter Arbeit. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 195, 261 (1940)
    Google Scholar
  11. Dennig, H., Talbot, J. T., Edwards, H. T., Dill, D. B.: Effect of acidosis and alkalosis upon capacity for work. J. clin. Invest. 9, 609 (1931)
    Google Scholar
  12. Dorow, H., Galuba, B., Hellwig, H., Becker-Freyseng, H.: Der Einfluß künstlicher Alkalose auf die sportliche Leistung von Läufern und Schwimmern. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 195, 264 (1940)
    Google Scholar
  13. Downing, S. E., Talner, N. S., Gardner, T. H.: Cardiovascular responses to metabolic acidosis. Amer. J. Physiol. 208, 237 (1965)
    Google Scholar
  14. Fuchs, F., Reddy, Y., Briggs, F. N.: The interaction of cations with the calcium-binding site of troponin. Biochim. biophys. Acta (Amst.) 221, 407 (1970)
    Google Scholar
  15. Gonzalez, N. C., Clancy, R. L.: Inotropic and intracellular acid-base changes during metabolic acidosis. Amer. J. Physiol. 228, 1060 (1975)
    Google Scholar
  16. Havel, V., Škranc, O.: Changes in the acid-base balance of the blood after repeated maximum exercise load. Physiol. bohemoslov. 20, 19 (1971)
    Google Scholar
  17. Hems, R., Ross, B. D., Berry, M. N., Krebs, H. A.: Gluconeogenesis in the perfused rat liver. Biochem. J. 101, 284 (1966)
    Google Scholar
  18. Hermansen, L.: Anaerobic energy release. Med. Sci. Sports 1, 32 (1969)
    Google Scholar
  19. Hermansen, L., Osnes, J. B.: Blood and muscle pH after maximal exercise in man. J. appl. Physiol. 32, 304 (1972)
    Google Scholar
  20. Hill, A. V.: The influence of the external medium on the internal pH of muscle. Proc. roy. Soc. B 144, 1 (1955)
    Google Scholar
  21. Hill, D. K.: Anaerobic recovery heat. J. Physiol. (Lond.) 98, 460 (1940)
    Google Scholar
  22. Hirche, Hj., Hombach, V., Langohr, H. D., Wacker, U., Busse, J.: Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis. Pflügers Arch. ges. Physiol. 356, 209 (1975)
    Google Scholar
  23. Hofer, H.-W., Pette, D.: Wirkungen und Wechselwirkungen von Substraten und Effektoren an der Phosphofructokinase des Kaninchen-Skeletmuskels. Z. physiol. Chem. 349, 1378 (1968)
    Google Scholar
  24. Hohorst, H. J.: L-(+)-Lactat, Bestimmung mit Lactatdehydrogenase und DPN. In: Methoden der enzymatischen Analyse. (H. U. Bergmeyer, Hrsg.). Weinheim: Verlag Chemie 1962
    Google Scholar
  25. Kindermann, W., Huber, G., Keul, J.: Anoxidative Energiebereitstellung beim Laufen und Schwimmen während ein- bis dreiminütiger Belastungsdauer. Sportarzt u. Sportmed. 24, 273 (1973)
    Google Scholar
  26. Kindermann, W., Keul, J., Reindell, H.: Grundlagen zur Bewertung leistungsphysiologischer Anpassungsvorgänge. Dtsch. med. Wschr. 99, 1372 (1974)
    Google Scholar
  27. Margaria, R., Aghemo, P., Sassi, G.: Effect of alkalosis on performance and lactate formation in supramaximal exercise. Int. Z. angew. Physiol. 29, 215 (1971)
    Google Scholar
  28. Marsiglia, J. C., Cingolani, H. E., Gonzalez, N. C.: Relevance of beta receptor blockade to the negative inotropic effect induced by metabolic acidosis. Cardiovasc. Res. 7, 336 (1973)
    Google Scholar
  29. Opie, L. H.: Effect of extracellular pH on function and metabolism of isolated perfused rat heart. Amer. J. Physiol. 209, 1075 (1965)
    Google Scholar
  30. Pannier, J., Weyne, J., Leusen, I.: Effects of pCO2, bicarbonate and lactate on the isometric contraction of isolated soleus muscle of the rat. Pflügers Arch. ges. Physiol. 320, 120 (1970)
    Google Scholar
  31. Poulus, A. J., Docter, H. J., Westra, H. G.: Acid-base balance and subjective feelings of fatigue during physical exercise. Europ. J. appl. Physiol. 33, 207 (1974)
    Google Scholar
  32. Racamora, J. M., Downing, S. E.: Preservation of ventricular function by adrenergic influences during metabolic acidosis in the cat. Circulat. Res. 24, 373 (1969)
    Google Scholar
  33. Rumler, W., Brümmer, H.: Über die Steigerung der körperlichen Leistungsfähigkeit durch THAM-Salze. Acta biol. med. germ. 17, 432 (1966)
    Google Scholar
  34. Saltin, B., Hermansen, L.: Glycogen stores and prolonged severe exercise. In: Physical activity and nutrition. Uppsala: Almquist & Wiksell 1967
    Google Scholar
  35. Severinghaus, J. W., Bradley, A. F.: Electrodes for blood pO2 and pCO2 determination. J. appl. Physiol. 13, 515 (1958)
    Google Scholar
  36. Siggaard-Andersen, O.: Acute experimental acid-base disturbances in dogs. Scand. J. clin. Lab. Invest. 14, 1 (1962)
    Google Scholar
  37. Siggaard-Andersen, O.: Blood acid-base alignment nomogram. Scand. J. clin. Lab. Invest. 15, 211 (1963)
    Google Scholar
  38. Simmons, D. H., Avedon, M.: Acid-base alteration and plasma potassium concentration. Amer. J. Physiol. 197, 319 (1959)
    Google Scholar
  39. Staib, A. H., Feller, K., Andreas, K.: Beobachtungen über pharmakologische Beeinflussungsmöglichkeiten des Blut-pH. Med. u. Sport 4, 181 (1964)
    Google Scholar
  40. Trivedi, B., Danforth, W. H.: Effect of pH on the kinetics of frog muscle phosphofructokinase. J. biol. Chem. 241, 4110 (1966)
    Google Scholar
  41. Ui, M.: A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochim. biophys. Acta (Amst.) 124, 310 (1966)
    Google Scholar
  42. Wildenthal, K. D., Mierzwiak, S., Myers, R. W., Mitchell, J. H.: Effects of acute lactic acidosis on left ventricular performances. Amer. J. Physiol. 214, 1352 (1958)
    Google Scholar
  43. Zimmermann, W. E.: Veränderungen des Säure-Basen-Haushaltes und deren Auswirkung auf die Organdurchblutung von Leber und Niere beim hämorrhagischen und traumatischen Schock. In: Anaesthesiologie und Wiederbelebung, Bd. 12, Berlin-Heidelberg-New York: Springer 1969
    Google Scholar

Download references