On the limit theorems for random variables with values in the spaces L p (2≦p<∞) (original) (raw)
- 331 Accesses
- 47 Citations
- Explore all metrics
Summary
We prove that whenever B is an infinite dimensional Banach space, there exists a _B_-valued random variable X failing the Central Limit Theorem (in short the CLT) and such that IE∥X∥2=∞ but yet satisfying the Law of the Iterated Logarithm (in short the LIL). We obtain a new sufficient condition for the LIL in Hilbert space and we characterize the random variables with values in l p or L p with 2<p<∞ which satisfy the CLT. As an application we show that in l p (2<p<∞) the stochastic boundedness of the weighed partial sums does not imply the CLT.
Article PDF
Similar content being viewed by others
References
- Aldous, D.: A characterization of Hilbert space using the central limit theorem. [To appear]
- Bonami, A.: Etude des coefficients de Fourier des fonctions de L p(G). Ann. Inst. Fourier (Grenoble) 20, 335–402 (1970)
Google Scholar - Crawford, J.: Ph. D Dissertation. University of Wisconsin at Madison (1976)
Google Scholar - Doob, J.L.: Stochastic Processes. New York: Wiley 1953
Google Scholar - Dvoretzky, A.: Some results on convex bodies and Banach spaces. Proc. Sympos. Lin. Spaces. Jerusalem (1961) 123–160
- Feller, W.: A limit theorem for random variables with infinite moments. Amer. J. Math. 68, 257–262 (1946)
Google Scholar - Figiel, T.: A short proof of Dvoretzky's theorem on almost spherical sections of convex bodies. Compositio Math. 33, 297–302 (1976)
Google Scholar - Hartman, S., Wintner, A.: On the law of the iterated logarithm. Amer. J. Math. 43, 169–176 (1941)
Google Scholar - Hoffmann-Jørgensen, J., Pisier, G.: The strong law of large numbers and the central limit theorem in Banach spaces. Ann. Probability 4, 587–599 (1976)
Google Scholar - Jain, N.C.: Central limit theorem and related questions in Banach spaces. To appear in the Proceedings of the Amer. Math. Soc. Probab. Sympos. Urbana, Illinois (1976)
- James, R.C.: Some self dual properties of Banach spaces. Ann. Math. Studies 69, 159–175 (1972)
Google Scholar - Krivine, J.L.: Théorèmes de factorisation dans les espaces réticulés. Séminaire Maurey-Schwartz, exp. 21–22 (1973–1974)
- Kuelbs, J.: A counterexample for Banach space valued random variables Ann. Probability 4, 684–689 (1976)
Google Scholar - Kuelbs, J.: The LIL and related strong convergence theorems for Banach space valued random variables. Ecole d'Eté de Calcul des Probabilités de St. Flour 1975. Lect. Notes in Math. No 539. Berlin-Heidelberg-New York: Springer 1975
Google Scholar - Kwapień, S.: On Banach spaces containing c 0. A supplement to the paper by J. Hoffmann-Jørgensen “Sums of independent Banach space valued random variables”. Studia Math. 52, 187–188 (1974)
Google Scholar - Maurey, B.: Sur les espaces de Banach munis de structures locales inconditionnelles. Séminaire Maurey-Schwartz exp. 24–25 (1973–1974)
- Pisier, G.: Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach.Séminaire Maurey-Schwartz, exp. 3–4 and Annexe 1 (1975–1976)
- Schreiber, M.: Fermeture en probabilité des chaos de Wiener. C.R. Acad. Sci. Paris, Sér. A, 265, 859 (1967)
Google Scholar - Strassen, V.: A converse to the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 265–268 (1966)
Google Scholar - Strassen, V., Dudley, R.M.: The central limit theorem and _ε_-entropy. Lecture Notes in Math. 89, 224–231. Berlin-Heidelberg-New York: Springer 1969
Google Scholar - Vakhania, N.V.: Sur une propriété des répartions normales de probabilités dans les espaces l p (1≦p<∞) et H. C.R. Acad. Sci. Paris Sér A 260, 1334–1336 (1965)
Google Scholar - Varberg, D.: Convergence of quadratic forms in independent random variables. Ann. Math. Statist. 37, 567–576 (1966)
Google Scholar
Author information
Authors and Affiliations
- Centre de Mathématiques de l'Ecole Polytechnique, Plateau de Palaiseau, F-91128, Palaiseau Cedex, France
Gilles Pisier - Laboratoire de Recherche Associé au C.N.R.S., France
Gilles Pisier - Department of Mathematics and Statistics, University of Massachusets, Amherst, USA
Joel Zinn
Authors
- Gilles Pisier
You can also search for this author inPubMed Google Scholar - Joel Zinn
You can also search for this author inPubMed Google Scholar
Additional information
Research partially supported by NSF Grant MCS 75-07605 A01
Rights and permissions
About this article
Cite this article
Pisier, G., Zinn, J. On the limit theorems for random variables with values in the spaces L p (2≦p<∞).Z. Wahrscheinlichkeitstheorie verw Gebiete 41, 289–304 (1978). https://doi.org/10.1007/BF00533600
- Received: 01 March 1977
- Issue Date: December 1978
- DOI: https://doi.org/10.1007/BF00533600