On the limit theorems for random variables with values in the spaces L p (2≦p<∞) (original) (raw)

Summary

We prove that whenever B is an infinite dimensional Banach space, there exists a _B_-valued random variable X failing the Central Limit Theorem (in short the CLT) and such that IE∥X∥2=∞ but yet satisfying the Law of the Iterated Logarithm (in short the LIL). We obtain a new sufficient condition for the LIL in Hilbert space and we characterize the random variables with values in l p or L p with 2<p<∞ which satisfy the CLT. As an application we show that in l p (2<p<∞) the stochastic boundedness of the weighed partial sums does not imply the CLT.

Article PDF

Similar content being viewed by others

References

  1. Aldous, D.: A characterization of Hilbert space using the central limit theorem. [To appear]
  2. Bonami, A.: Etude des coefficients de Fourier des fonctions de L p(G). Ann. Inst. Fourier (Grenoble) 20, 335–402 (1970)
    Google Scholar
  3. Crawford, J.: Ph. D Dissertation. University of Wisconsin at Madison (1976)
    Google Scholar
  4. Doob, J.L.: Stochastic Processes. New York: Wiley 1953
    Google Scholar
  5. Dvoretzky, A.: Some results on convex bodies and Banach spaces. Proc. Sympos. Lin. Spaces. Jerusalem (1961) 123–160
  6. Feller, W.: A limit theorem for random variables with infinite moments. Amer. J. Math. 68, 257–262 (1946)
    Google Scholar
  7. Figiel, T.: A short proof of Dvoretzky's theorem on almost spherical sections of convex bodies. Compositio Math. 33, 297–302 (1976)
    Google Scholar
  8. Hartman, S., Wintner, A.: On the law of the iterated logarithm. Amer. J. Math. 43, 169–176 (1941)
    Google Scholar
  9. Hoffmann-Jørgensen, J., Pisier, G.: The strong law of large numbers and the central limit theorem in Banach spaces. Ann. Probability 4, 587–599 (1976)
    Google Scholar
  10. Jain, N.C.: Central limit theorem and related questions in Banach spaces. To appear in the Proceedings of the Amer. Math. Soc. Probab. Sympos. Urbana, Illinois (1976)
  11. James, R.C.: Some self dual properties of Banach spaces. Ann. Math. Studies 69, 159–175 (1972)
    Google Scholar
  12. Krivine, J.L.: Théorèmes de factorisation dans les espaces réticulés. Séminaire Maurey-Schwartz, exp. 21–22 (1973–1974)
  13. Kuelbs, J.: A counterexample for Banach space valued random variables Ann. Probability 4, 684–689 (1976)
    Google Scholar
  14. Kuelbs, J.: The LIL and related strong convergence theorems for Banach space valued random variables. Ecole d'Eté de Calcul des Probabilités de St. Flour 1975. Lect. Notes in Math. No 539. Berlin-Heidelberg-New York: Springer 1975
    Google Scholar
  15. Kwapień, S.: On Banach spaces containing c 0. A supplement to the paper by J. Hoffmann-Jørgensen “Sums of independent Banach space valued random variables”. Studia Math. 52, 187–188 (1974)
    Google Scholar
  16. Maurey, B.: Sur les espaces de Banach munis de structures locales inconditionnelles. Séminaire Maurey-Schwartz exp. 24–25 (1973–1974)
  17. Pisier, G.: Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach.Séminaire Maurey-Schwartz, exp. 3–4 and Annexe 1 (1975–1976)
  18. Schreiber, M.: Fermeture en probabilité des chaos de Wiener. C.R. Acad. Sci. Paris, Sér. A, 265, 859 (1967)
    Google Scholar
  19. Strassen, V.: A converse to the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 265–268 (1966)
    Google Scholar
  20. Strassen, V., Dudley, R.M.: The central limit theorem and _ε_-entropy. Lecture Notes in Math. 89, 224–231. Berlin-Heidelberg-New York: Springer 1969
    Google Scholar
  21. Vakhania, N.V.: Sur une propriété des répartions normales de probabilités dans les espaces l p (1≦p<∞) et H. C.R. Acad. Sci. Paris Sér A 260, 1334–1336 (1965)
    Google Scholar
  22. Varberg, D.: Convergence of quadratic forms in independent random variables. Ann. Math. Statist. 37, 567–576 (1966)
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Centre de Mathématiques de l'Ecole Polytechnique, Plateau de Palaiseau, F-91128, Palaiseau Cedex, France
    Gilles Pisier
  2. Laboratoire de Recherche Associé au C.N.R.S., France
    Gilles Pisier
  3. Department of Mathematics and Statistics, University of Massachusets, Amherst, USA
    Joel Zinn

Authors

  1. Gilles Pisier
    You can also search for this author inPubMed Google Scholar
  2. Joel Zinn
    You can also search for this author inPubMed Google Scholar

Additional information

Research partially supported by NSF Grant MCS 75-07605 A01

Rights and permissions

About this article

Cite this article

Pisier, G., Zinn, J. On the limit theorems for random variables with values in the spaces L p (2≦p<∞).Z. Wahrscheinlichkeitstheorie verw Gebiete 41, 289–304 (1978). https://doi.org/10.1007/BF00533600

Download citation

Keywords