Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal chromaffin cells (original) (raw)
References
Agranoff, B. W., Murthy, P., and Seguin, E. B. (1983). Thrombin-induced phosphodiesteratic cleavage of phosphatidylinsoitol bisphosphate in human platelets.J. Biol. Chem.2582076–2078. Google Scholar
Batty, I. R., Nahorski, S. R., and Irvine, R. F. (1985). Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices.Biochem. J.232211–215. Google Scholar
Berridge, M. J. (1987). Inositol trisphosphate and diacylglycerol: Two interacting second messengers.Annu. Rev. Biochem.56159–193. Google Scholar
Berridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P., and Irvine, R. F. (1983). Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides.Biochem. J.212473–482. Google Scholar
Bittner, M. A., Holz, R. W., and Neubig, R. R. (1986). Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells.J. Biol. Chem.26110182–10188. Google Scholar
Chahwala, S. B., Fleischman, L. F., and Cantley, L. (1987). Kinetic analysis of guanosine 5′-0-(3-thiotriphosphate) effects on phosphatidylinositol turnover in NRK cell homogenates.Biochemistry26612–622. Google Scholar
Chang, D., Hsieh, P. S., and Dawson, D. C. (1988). A program in BASIC for calculating the composition of solutions with specified free concentrations of calcium, magnesium and other divalent cations.Comput. Biol. Med.18351–366. Google Scholar
Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J., and Burgoyne, R. D. (1989). Spatial localization of the stimulus-induced rise in ctyosolic Ca2+ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns.FEBS Lett.247429–434. Google Scholar
Coughlin, S. R., Escobedo, J. A., and Williams, L. T. (1989). Role of phosphatidylinositol kinase in PDGF receptor signal transduction.Science2431191–1194. Google Scholar
Courtneidge, S. A., and Heber, A. (1990). An 81 kd protein complexed with middel T antigen and pp60c-src: A possible phosphatidylinositol kinase.Cell501031–1037. Google Scholar
Creba, J. A., Downes, C. P., Hawkins, P. T., Brewster, G., Michell, R. H., and Kirk, C. J. (1983). Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulates by vasopressin and other Ca2+-mobilizing hormones.Biochem. J.212733–747. Google Scholar
Downes, C. P., and Michell, R. H. (1981). The polyphosphoinositide phosphodiesterase of erythrocyte membranes.Biochem. J.198133–140. Google Scholar
Downes, C. P., Hawkins, P. T., and Stephens, L. (1989). Identification of the stimulated reaction in intact cells, its substrate supply and the metabolism of inositol phosphates. In_Inositol Lipids in Cell Signalling_ (R. H. Drummond, A. H. Drummond and C. P. Downes, Eds.), Academic Press, New York, 1989, pp. 3–38. Google Scholar
Dunn, L. A., and Holz, R. W. (1983). Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells.J. Biol. Chem.2584989–4993. Google Scholar
Eberhard, D. A., and Holz, R. W. (1987). Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic mechanisms.J. Neurochem.491634–1643. Google Scholar
Eberhard, D. A., and Holz, R. W. (1988). Intracellular Ca2+ activates phospholipase C.Trends Neurosci.11517–520. Google Scholar
Eberhard, D. A., Cooper, C. L., Low, M. G., and Holz, R. W. (1990). Evidence that the inositol phospholipids are necessary for exocytosis: Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP.Biochem. J.26815–25. Google Scholar
Goldschmidt-Clermont, P. J., Machesky, L. M., Baldassare, J. J., and Pollard, T. D. (1990). The actin-binding protein porfilin binds to PIP2 and inhibits its hydrolysis by phospholipase C.Science2471575–1578. Google Scholar
Holz, R. W., Senter, R. A., and Frye, R. A. (1982). Relationship between Ca2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla.J. Neurochem.39635–646. Google Scholar
House, C., and Kemp, B. E. (1987). Protein kinase C contains a pseudosubstrate prototype in its regulatory domain.Science2381726–1728. Google Scholar
Husebye, E. S., and Flatmark, T. (1988). Phosphatidylinositol kinase of bovine adrenal chromaffin granules: Kinetic properties and inhibition by low concentrations of Ca2+.Biochim. Biophys. Acta968261–265. Google Scholar
Janmey, P. A., and Stossel, T. P. (1989). Gelsolin-polyphosphoinositide interaction: Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group.J. Biol. Chem.2644825–4831. Google Scholar
Kao, L.-S., and Schneider, A. S. (1985). Muscarinic receptors on bovine chromaffin cells mediate a rise in cytoplasmic calcium that is independent of extracellular calcium.J. Biol. Chem.2602019–2022. Google Scholar
Knight, D. E., and Baker, P. F. (1982). Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields.J. Membrane Biol.68107–140. Google Scholar
Lassing, I., and Lindberg, U. (1988). Specificity of the interaction between phosphatidylinositol 4,5-bisphosphate and the profilin:actin complex.J. Cell Biochem.37255–267. Google Scholar
Martin, T. F. J., Lucas, D. O., Baijjalieh, S. M., and Kowalchyk, J. A. (1986). Thryotropin-releasing hormone activates a Ca2+-dependent polyphosphoinositide phosphodiesterase in permeable GH3 cells.J. Biol. Chem.2612918–2927. Google Scholar
Oberdorf, J., Vilar-Rojas, C., and Epel, D. (1989). The localization of PI and PIP kinase activities in the sea urchin egg and their modulation following fertilization.Dev. Biol.131236–242. Google Scholar
Plevin, R., and Boarder, M. R. (1988). Stimulation of formation of inositol phosphates in primary cultures of bovine adrenal chromaffin cells by angiotensin II, histamine, bradykinin, and carbachol.J. Neurochem.51634–641. Google Scholar
Portzehl, H., Caldwell, P. C., and Reugg, J. C. (1964). The dependence of contraction and relaxation of muscle fibers from the crab Maia squinado on the internal concentrations of free calcium ions.Biochim. Biophys. Acta79581–591. Google Scholar
Rebecchi, M. J., and Gershengorn, M. C. (1983). Thyroliberin stimulates rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate by a phosphodiesterase in rat mammotropic pituitary cells. Evidence for an early Ca2+-independent action.Biochem. J.216287–294. Google Scholar
Sasakawa, N., Nakaki, T., Yamamoto, S., and Kato, R. (1989). Calcium uptake-dependent and-independent mechanisms of inositol trisphosphate formation in adrenal chromaffin cells: Comparative studies with high K+, carbamylcholine and angiotensin II.Cell. Signal.175–84. Google Scholar
Schacht, J. (1976). Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro.J. Neurochem.271119–1124. Google Scholar
Schacht, J. (1978). Purification of polyphosphoinositides by chromatography on immobilized neomycin.J. Lipid Res.191063–1067. Google Scholar
TerBush, D. R., and Holz, R. W. (1990). Activation of protein kinase C is not required for exocytosis from bovine adrenal chromaffin cells: The effects of PKC(19-31), Ca/CaM kinase II(291-317) and staurosporin.J. Biol. Chem.26521179–21184. Google Scholar
Van Rooijen, L. A., Rossowska, M., and Bazan, N. G. (1985). Inhibition of phosphatidylinositol-4-phosphate kinase by its product phosphatidylinositol-4,5-biphosphate.Biochem. Biophys. Res. Commun.126150–155. Google Scholar
Waymire, J. C., Bennett, W. F., Boehme, R., Hanteins, L., Gilmer-Waymire, K., and Haycock, J. (1983). Bovine adrenal chromaffin cells: High-yield purification and viability in suspension culture.J. Neurosci. Methods7329–351. Google Scholar
Whipps, D. E., Armston, A. E., Pryor, H. J., and Halestrap, A. P. (1987). Effects of glucagon and Ca2+ on the metabolism of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in isolated rat hepatocytes and plasma membranes.Biochem. J.241835–845. Google Scholar
Whitaker, M. (1985). Polyphosphoinositide hydrolysis is associated with exocytosis in adrenal medullary cells.FEBS Lett.189137–140. Google Scholar
Wilson, S. P., and Kirshner, N. (1983). Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells.J. Biol. Chem.2584994–5000. Google Scholar