Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes (original) (raw)
Abstract
Remote sensing studies of the Central Andean volcanic province between 18°–27°S with the Landsat Thematic Mapper have revealed the presence of 28 previously undescribed breached volcanic cones and 14 major volcanic debris avalanche deposits, of which only 3 had previously been identified. Several of the debris avalanche deposits cover areas in excess of 100 km2 and have volumes of the order of 10 km3. H/L ratios for the deposits have a median of 0.1 and a mean of 0.11, values similar to those determined for deposits described in other regions. Surface morphologies commonly include the hummocky topography of small hillocks and enclosed basins that is typical of avalanche deposits, but some examples exhibit smoother surfaces characterised by longitudinal grooves and ridges. These differences may result from the effects of flow confinement by topography or from variations in resistance to shearing in the materials involved. Breached composite cones and debris avalanche deposits tend to occur at right angles to regional tectonic elements, suggesting possible seismic involvement in triggering collapse and providing an additional consideration for assessment of areas at risk from collapse. The low denudation rate in the Central Andes, coupled with the predominance of viscous dacite lavas in volcanic edifices, produces unusually steep cones which may result in a higher incidence of volcano collapse than in other regions. A statistical survey of 578 composite volcanoes in the study area indicates that a majority of cones which achieve edifice heights between 2000–3000 m may undergo sector collapse.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Bruggen J (1942) Geologia de la puna de San Pedro de Atacama y sus formaciones de areniscas y arcillas rojas. Anales primer Congreso Panamericano de Ingeniera de Minas y Geologia, Tomo 1, 374
Google Scholar - Corvalan J (1981) Plate-tectonic map of the circum-Pacific region, southeast quadrant. American Association of Petroleum Geologists: Tulsa, Oklahoma
Google Scholar - Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta, California. Geology 12:143–146
Google Scholar - Deruelle B (1978a) The Negras de Aras nuee ardente deposits: a cataclysmic eruption of Socompa volcano (Andes of Atacama, north Chile). Bull Volcanol 413:175–186
Google Scholar - Deruelle B (1978b) Calc-alkaline and shoshonitic lavas from five Andean volcanoes between latitudes 21°45′ and 24°30′ South and the distribution of Plio-Quaternary volcanism of the south-central and southern Andes. J Volcanol Geotherm Res 3:281–298
Google Scholar - Deruelle B, Brousse R (1984) “Nuee ardente” deposits at Tata Sabaya volcano (Bolivian-Chilean Andes): pumices and lava blocks crystallised from a single magma at different depths. Rev Geol Chile 22:3–15
Google Scholar - Francis PW, Ramirez CF (1985) “Nuée ardente” deposits at Tata Sabaya volcano: a re-interpretation. Rev Geol Chile 24:107–110
Google Scholar - Francis PW, Rundle CC (1976) Rates of production of the main magma types in the Central Andes. Geol Soc Am Bull 87:474–480
Google Scholar - Francis P, Self S (1987) Collapsing volcanoes. Sci Am 256:90–97
Google Scholar - Francis PW, Roobol MJ, Walker GPL, Cobbold PR, Coward M (1974) San Pedro and San Pablo volcanoes of north Chile and their avalanche deposits. Geol Rdsch 63:357–388
Google Scholar - Francis PW, Gardeweg M, Ramirez CT, Rothery DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13:600–603
Google Scholar - Gardeweg M, Cornejo P, Davidson J (1984) Geologia del volcan Llullaillaco, altiplano de Antofagasta, Chile (Andes Centrales). Rev Geol Chile 23:21–37
Google Scholar - Glicken H (1982) Criteria for identification of large volcanic debris avalanches (abstr) EOS Trans Am Geophys Union 63:1141
Google Scholar - Hastenrath S, Kutzbach J (1985) Late Pleistocene climate and water budget of the South American Altiplano. Quater Research 24:249–256
Google Scholar - Howard KA (1973) Avalanche mode of motion: implications from lunar examples. Science 180:1052–1055
Google Scholar - Hsu KJ (1975) Catastrophic debris streams (sturztroms) generated by rockfalls. Geol Soc Am Bull 86:129–140
Google Scholar - Katsui Y, Gonzalez O (1968) Geologia del area neovolcanica de los Nevados de Payachata. Univ Chile, Dept Geologia Publ 29
- Lucchitta BK (1978) A large landslide on Mars. Geol Soc Am Bull 89:1601–1609
Google Scholar - Lucchitta BK (1979) Landslides in Valles Marineris, Mars. J Geophys Res 84:8097–8113
Google Scholar - Lucchitta BK (1987) Valles Marineris: Wet debris flows and ground ice. ICARUS 72:411–429
Google Scholar - Luhr JF, Carmichael ISE (1982) The Colima volcanic complex, Mexico. III. Ashfall and scoria-fall deposits from the upper slopes of Volcan Volcan Colima. Contrib Mineral Petrol 80:262–275
Google Scholar - McSaveney MJ (1978) Sherman Glacier rock avalanche, Alaska, USA. In: B Voight (ed) Rockslides and avalanches, vol 1. Natural phenomena. Elsevier, New York, pp 197–258
Google Scholar - Melosh HJ (1979) Acoustic fluidization: a new geological process? J Geophys Res 84:7513–7520
Google Scholar - Melosh HJ (1987) The mechanics of large rock avalanches. Geol Soc Am Rev Eng Geol 7:41–49
Google Scholar - Naranjo JA (1985) Sulphur flows at Lastarria volcano in the north Chilean Andes. Nature 313:778–780
Google Scholar - Naranjo JA, Francis PW (1987) High velocity debris avalanche deposit at Lastarria volcano in the north Chilean Andes. Bull Volcanol 49:509–514
Google Scholar - O'Callaghan LJ, Francis PW (1986) Volcanological and petrolgical evolution of San Pedro volcano, provincia El Loa, north Chile. J Geol Soc Lond 143:275–286
Google Scholar - Reiche P (1937) The toreva block — a distinctive landslide type. J Geol 45:538–548
Google Scholar - Robin C, Boudal C (1984) Une éruption remarquable par son volume: l'evenement de type Saint-Helens du Popocatepetl (Mexique). C R Acad Sc Paris 299:881–886
Google Scholar - Servant M, Fontes JC (1978) Les lacs quaternaires de hauts plateaux des Andes premierès interpretations paléoclimatiques. Cahiers de l'OSTROM Ser Geol 10:9–23
Google Scholar - Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197
Google Scholar - Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny and Bandai-type eruptions. Bull Volcanol 49:435–459
Google Scholar - Ui T (1983) Volcanic dry avalanche deposits — identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150
Google Scholar - Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: PW Lipman, DR Mullineau (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Sur Prof Paper 1250:347–377
Google Scholar - Wörner G, Harmon RS, Davidson J, Moorbath S, Turner DL, McMillan N, Nye C, Lopez-Escobar L, Moreno H (1988) The Nevados de Payachata volcanic group (18°S/69°W, N. Chile): geological, geochemical and isotopic observations Bull Volcanol (in press)
Author information
Authors and Affiliations
- Lunar and Planetary Institute, 3303 NASA Road 1, 77058, Houston, TX, USA
P. W. Francis & G. L. Wells
Authors
- P. W. Francis
You can also search for this author inPubMed Google Scholar - G. L. Wells
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Francis, P.W., Wells, G.L. Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes.Bull Volcanol 50, 258–278 (1988). https://doi.org/10.1007/BF01047488
- Received: 28 October 1987
- Accepted: 22 February 1988
- Issue Date: July 1988
- DOI: https://doi.org/10.1007/BF01047488