Characterization of benzodiazepine-sensitive behaviors in the A/J and C57BL/6J inbred strains of mice (original) (raw)
References
Al-Ani, A. T., Tunnicliff, G., Rick, J. T., and Kerkut, G. A. (1970). GABA production, acetylcholinesterase activity and biogenic amine levels in brain for mouse strains differing in spontaneous activity and reactivity.Life Sci.9:21–27. Google Scholar
Bluinstein, L. K., and Crawley, J. N. (1983). Further characterization of a simple automated exploratory model for the anxiolytic effccts of benzodiazepines.Pharmacol. Biochem. Behav.18:37–40. Google Scholar
Bovet, D., Bovet-Nitt, F., and Oliverio, A. (1969). Genetic aspects of learning and memory in mice.Sciences163:139–149. Google Scholar
Castellano, C., Cestari, V., Cabib, S., and Puglisi-Allegra, S. (1993). Strain-dependent effects of post-training GABA receptor agonists and antagonists on memory storage in mice.Psychopharmacology111:134–138. Google Scholar
Chapouthier, G., Bondoux, D., Martin, B., Desforges, C., and Launay, J.-M. (1991). Genetic difference in sensitivity to β-carboline: Evidence for the involvement of brain benzodiazepine receptors.Brain Res.553:342–346. Google Scholar
Crabbe, J. C., Kosobud, A., Young, E. R., and Janowsky, J. S. (1983). Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred mouse strains.Neurobehav. Toxicol. Teratol.5:181–187. Google Scholar
Crawley, J. N. (1981). Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines.Pharmacol. Biochem. Behav.15:695–699. Google Scholar
Crawley, J. N. (1985). Exploratory behavior models of anxiety in mice.Neurosci. Biobehav. Rev.9:37–44. Google Scholar
Crawley, J. N., and Davis, L. G. (1982). Baseline exploratory activity predicts anxiolytic responsiveness to diazepam in five strains of mouse.Brain Res. Bull.8:609–612. Google Scholar
Crawley, J. N., and Goodwin, F. K. (1980). Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines.Pharmacol. Biochem. Behav.13:167–170. Google Scholar
Crawley, J. N., Glowa, J. R., Majewska, M. D., and Paul, S. M. (1986). Anxiolytic activity of an endogenous adrenal steroid.Brain Res.398:382–385. Google Scholar
Crusio, W. E., Schwegler, H., and van Abeelen, J. H. F. (1989). Behavioral responses to novelty and structural variation of the hippocampus in mice. II. Multivariate genetic analysis.Behav. Brain Res.32:81–88. Google Scholar
Crusio, W. E., Schwegler, H., and van Abeelen, J. H. F. (1991). Behavioural and neuroanatomical divergence between two sublines of C57BL/6J inbred mice.Behav. Brain Res.42:93–97. Google Scholar
FeFries, J. C., Hegmann, J. P., and Weir, M. W. (1966). Open field behavior in mice: Evidence for a major gene effect mediated by the visual system.Science154:1577–1579. Google Scholar
DeFries, J. C., Gervais, M. C., and Thomas, E. A. (1978). Response to 30 generations of selection for open field activity in laboratory mice.Behav. Genet.8:3–13. Google Scholar
Desforges, C., Venault, P., Dodd, R. H., Chapouthier, G., and Roubertoux, P. L. (1989). β-Carboline induced scizures in mice: Genetic analysis.Pharmacol. Biochem. Behav.34:733–737. Google Scholar
Duncan, N. C., Grossen, N. E., and Hunt, E. B., (1971). Apparent memory differences in inbred strains of mice produced by different reaction to stress.J. Comp. Physiol. Psychol.74:383–389. Google Scholar
Durkin, T., Ayad, G., Ebel, A., and Mandel, P. (1977). Regional acetylcholine turnover rates in the brains of three inbred strains of mice: Correlation with some interstrain behavioral differences.Brain Res.136:475–486. Google Scholar
Fagioli, S., Ammassari-Teule, M., Rossi-Arnaud, C., and Castellano, C. (1992). Age-dependent learning performance during development and aging in C57BL/6 mice.Dementia3:247–250. Google Scholar
File, S. E. (1983). Variability in behavioral responses to benzodiazepines in the rat.Pharmacol. Biochem. Behav.18:303–306. Google Scholar
Fuller, J. L. (1970). Strain differences in the effects of chlorpromazine and chlordiazepoxide upon active and passive avoidance in mice.Psychopharmacologia16:261–271. Google Scholar
Hall, R. C. W., and Zisook, S. (1981). Paradoxical reactions to benzodiazepines.Br. J. Clin. Pharmac.11:99S-104S. Google Scholar
Jaffard, R., Ebel, A., Destrade, C., Durkin, T., Mandel, P., and Cardo, B. (1977). Effects of hippocampal electrical stimulation on long term memory and on cholinergic mechanisms in three inbred strains of mice.Brain Res.133:277–289. Google Scholar
Kosobud, A. E., and Crabbe, J. C. (1990). Genetic correlations among inbred strain sensitivities to convulsions induced by 9 convulsants.Brain Res.526:8–16. Google Scholar
Lister, R. G. (1985). The use of a plus maze to measure anxiety in the mouse.Psychopharmacology92:180–185. Google Scholar
Mandelli, M., Tognoni, G., and Garattini, S. (1978). Clinical pharmacokinetics of diazepam.Clin Pharmacokin.3:72–91. Google Scholar
Marks, M. J., Stizel, J. A., and Collins, A. C. (1989). Genetic influences on nicotine responses.Pharmacol. Biochem. Behav.33:667–678. Google Scholar
Martin, J., Desforges, C., and Chapouthier, G. (1991). Comparisons between patterns of convulsions induced by two β-carbolines in 10 inbred strains of mice.Neurosci. Lett.133:73–76. Google Scholar
Neumann, P. E. (1992). Inference in linkage analysis of multifactorial traits using recombinant inbred strains of mice.Behav. Genet.22:665–676. Google Scholar
Nutt, D. J., and Lister, R. G. (1988). Strain differences in response to a benzodiazepine receptor inverse agonist (FG 7142) in mice.Psychopharmacology94:435–436. Google Scholar
Oliviero, A., Eleftheriou, B. E., and Bailey, D. W. (1973). A gene influencing active avoidance performance in mice.Physiol. Behav.11:497–501. Google Scholar
Parry, H. J., Balter, L. B., Mellinger, G. D., Cissin, I. H., and Manheimer, D. I. (1973). National patterns of psychotherapeutic drug use.Arch. Gen. Psychiat.28:769–783. Google Scholar
Plomin, R., McClearn, G. E., Gora-Maslak, G., and Neiderhiser, J. M. (1991). Use of recombinant inbred strains to detect quantitative trait loci associated with behavior.Behav. Genet.21:99–116. Google Scholar
Robertson, H. A. (1979). Benzodiazepine receptors in “emotional” and “non-emotional” mice: Comparison of four strains.Eur. J. Pharmacol.56:64–66. Google Scholar
Rossi-Arnaud, C., Fagioli, S., and Ammassari-Teule, M. (1991). Spatial learning in two inbred strains of mice: Genotypedependent effect of amygdaloid and hippocampal lesions.Behav. Brain Res.45:9–16. Google Scholar
Schweri, M. M., Paul, S. M., and Skolnick, P. (1983). Strain differences in susceptibility to the convulsant actions of 3-carbomethoxy-β-carboline.Pharmacol. Biochem. Behav.19:951–955. Google Scholar
Skolnick, P., Crawley, J. N., Glowa, J. R., and Paul, S. M. (1984). β-Carboline-induced anxiety states.Psychopathology17:52–60. Google Scholar
Trullas, R., and Skolnick, P. (1993). Differences in fear motivated behaviors among inbred mouse strains.Psychopharmacology111:323–331. Google Scholar
Upchurch, M., and Wehner, J. M. (1988). Differences between inbred strains of mice in Morris water maze performance.Behav. Genet.18:55–68. Google Scholar
Van Daal, J. H. H. M., De Kok, Y. J. M., Jenks, B. G., Wendelaar Bonga, S. E., and van Abeelen, J. H. F. (1987). A genetic-dependent hippocampal dynorphinergic mechanism controls mouse exploration.Pharmacol. Biochem. Behav.28:465–468. Google Scholar
Venault, P., Chapouthier, G., Prado de Carvalho, L., Simiand, J., Morre, M., Dodd, R. H., and Rossier, J. (1986). Benzodiazepine impairs and β-carboline enhances performance in learning and memory tasks.Nature321:864–866. Google Scholar
Wahlsten, D. (1972). Phenotypic and genetic relations between initial response to electric shock and rate of avoidance learning in mice.Behav. Genet.2:211–240. Google Scholar
Weinberger, S. B., Koob, G. F., and Martinez, J. L., Jr. (1992). Differences in one-way active avoidance learning in mice of three inbred strains.Behav. Genet.22:177–188. Google Scholar
Wong, P. T.-H., Yoong, Y. L., and Gwee, M. C. E. (1986). Marked variation in diazepam sensitivity in Swiss albino mice.Life Sci.39:945–952. Google Scholar