New bisphosphonates in osteoporosis (original) (raw)
References
Fleisch H, Russell RGG. Bisphosphonates: a new class of drugs in diseases of bone and calcium metabolism. In: Baker PF, ed. Encyclopaedia (Int) of pharmacology and therapeutics. Berlin: Springer-Verlag, 1988; 83:441–66. Google Scholar
Fleisch H. Bisphosphonates: pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 1991; 42:919–44. Google Scholar
Papapoulos SE, Bijvoet OLM, Valkema R, et al. New bisphosphonates in the treatment of osteoporosis. In: Christiansen C, Overgaard K, eds. Osteoporosis: Third International Symposium on Osteoporosis, Copenhagen, Denmark. Copenhagen: Osteoporosis, 1990:1294–1300. Google Scholar
Fleisch H. The use of bisphosphonates in osteoporosis. In: Stevenson JC, Lindsay R, eds. Osteoporosis. London: Chapman and Hall. In press.
Jung A. Bisaz S, Fleisch H. The binding of pyrophosphate and two diisphosphonates on hydroxyapatite crystals. Calcif Tissue Res 1973; 11:269–80. Google Scholar
Francis MD. The inhibition of calcium hydroxyapatite crystal growth by polyphosphates. Calcif Tissue Res 1969; 3:151–62. Google Scholar
Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969; 165:1262–4. Google Scholar
Fleisch H, Russell RGG, Bisaz S, Mühlbauer RC, Williams DA. The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Invest 1970; 1:12–18. Google Scholar
Trechsel U, Schenk R, Bonjour JP, Russell RGG, Fleisch H. Relation between bone mineralization. Ca absorption, and plasma Ca in phosphonate-treated rats. Am J Physiol 1977; 232:E298-E305. Google Scholar
Shinoda H, Adamek G, Felix R, Fleisch H, Schenk R, Hagan P. Structure-activity relationship of various bisphosphonates. Calcif Tissue Int 1983; 35:87–99. Google Scholar
Schenk R, Merz WA, Mühlbauer R, Russell RGG, Fleisch H. Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (Cl2MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif Tissue Res 1973; 11:196–214. Google Scholar
Reitsma PH, Bijvoet OLM, Verlinden Ooms H, van der Wee-Pals LJA, Kinetic studies of bone and mineral metabolism during treatment with (3-amino-1-hydroxy-propylidene)-1,1-bisphosphonate (ADP) in rats. Calcif Tissue Int 1980; 32:145–7. Google Scholar
Schenk R, Eggli P, Felix R, Fleisch H, Rosini S. Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int 1986; 38:342–9. Google Scholar
Gasser AB, Morgan DB, Fleisch HA, Richelle LJ. The influence of two diphosphonates on calcium metabolism in the rat. Clin Sci 1972; 43:31–45. Google Scholar
Trechsel U, Stutzer A, Fleisch H. Hypercalcemis induced with an arotinoid in thyroparathyroidectomized rats. A new model to study bone resorption in vivo. J Clin Invest 1987; 80:1679–86. Google Scholar
Mühlbauer RC, Bauss F, Schenk R, et al. BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Mines Res 1991; 6:1003–11. Google Scholar
Martodam RR, Thornton KS, Sica DA, Souza SM, Flora L, Mundy G. The effects of dichloromethylene diphosphonate on hypercalcemia and other parameters of the humoral hypercalcemia of malignancy in the rat Leydig cell tumor. Calcif Tissue Int 1983; 35:512–19. Google Scholar
Kozak St, Rizzoli R, Trechsel U, Fleisch H. Effect of a single injection of two new bisphosphonates on the hypercalcemia and hypercalciuria induced by Walker carcinosarcoma 256/B in thyroparathyroidectomized rats. Cancer Res 1987; 47-6193-7.
Michael WR, King WR, Francis MD. Effectiveness of diphosphonates in preventing “osteoporosis” of disuse in the rat. Clin Orthop 1971; 78:271–6. Google Scholar
Mühlbauer RC, Russell RGG, Williams DA, Fleisch H. The effects of diphosphonates, polyphosphates and calcitonin “immobilisation osteoporosis” in rats. Eur J Clin Invest 1971; 1:336–44. Google Scholar
Ferretti JL, Mondelo N, Capozza R, et al. Pamidronate and dimethyl-pamidronate effects on femur biomechanics in ovariectomized-hemisciaticectomized rat. Bone Miner 1992; 17 (Suppl)1:S12.
Schoutens A, Verhas M, Dourov N, et al. Bone loss and bone blood flow in paraplegic rats treated with calcitonin, diphosphonate, and indomethacin. Calcif Tissue Int 1988; 42:136–42. Google Scholar
Apseloff G, Girten B, Walter M, et al. Aminohydroxybutane bisphosphonate prevents bone loss in a rate model of simulated weightlessness. Curr Ther Res 1991; 50:794–803. Google Scholar
Shiota E. Effects of diphosphonate on osteoporosis induced in rats. Roentgenological, histological and biomechanical studies. Fukuoka Acta Med 1985; 76/6:317–42. Google Scholar
Wronski TJ, Yen C-F, Scott KS. Estrogen and diphosphonate treatment provide long-term protection against osteopenia in ovariectomized rats. J Bone Miner Rest 1991; 6:387–94. Google Scholar
Wink CS, Onge MS, Parker B. The effects of dichloromethylene bisphosphonate on osteoporotic femora of adult castrated male rats. Acta Anat 1985; 124:117–21. Google Scholar
Seedor JG, Quartuccio HA, Thompson DD. The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res 1991; 6:339–46. Google Scholar
Ammann P, Rizzoli R, Slosman DO, Bonjour J-P. Effects of intermittent cyclical versus continuous treatment with the bisphosphonate tiludronate on bone mineral density sequentially evaluated by dual energy X-ray absorptiometry in ovariectomized rats. Bone Miner 1992; 17(Suppl)1:S11. Google Scholar
Barbier A, Edmonds-Alt X, Brelière JC, Ethgen D. In vitro and in vivo osseous pharmacological profile of tiludronate. Implication for osteoporosis treatment. In: Christiansen C, Overgaard K, eds. Third International Symposium on Osteoporosis, Copenhagen, Denmark. Copenhagen: Osteopress, 1990:1127–30. Google Scholar
Jee WSS, Black HE, Gotcher, JE. Effect of dichloromethane diphosphonate on cortisol-induced bone loss in young adult rabbits. Clin Orthop Rel Res 1981; 158:39–51. Google Scholar
Jowsey J, Holley KE. Influence of diphosphonates on progress of experimentally induced osteoporosis. J Lab Clin Med 1973; 82:567–75. Google Scholar
Brommage R, Baxter DC. Inhibition of bone mineral loss during lactation by Cl2MBP. Calcif Tissue Int 1990; 47:169–72. Google Scholar
Hähnel H, Mühlbach R, Líndenhayn K, Schaetz P, Schmidt UJ. Zum Einfluss von DIphosphonat auf die experimentelle Heparinosteopathie. Z Altersforsch 1973; 28:289–92. Google Scholar
Glatt M, Pataki A, Blättler A, Reife R. APD long-term treatment increases bone mass and mechanical strength of femora of adult mice. Calcif Tissue Int 1986; 39:A72. Google Scholar
Ferretti JL, Cointry G, Capozza R, Montuori E, Roldán E, Pérez Lloret A. Biomechanical effects of the full range of useful doses of (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD) on femur diaphyses and cortical bone tissue in rats. Bone Miner 1990; 11:111–22. Google Scholar
Ferretti JL, Mondelo N, Capozza R, Bogado CE, Montuori E, Zanchetta JR. Effects of dimethyl-APD on mineral density and mechanical properties of male rate femora. J Bone Miner Res 1990; 5(Suppl):S105. Google Scholar
Geusens P, Nijs J, Van der Perre G, et al. Longitudinal skeletal effect of tiludronate on bone density and strength in monkeys. In: Christiansen, C, Overgaard K, eds. Third International Symposium on Osteoporosis, Copenhagen, Denmark. Copenhagen: Osteopress 1990: 366–7. Google Scholar
Kawamuki K, Abe T, Kudo M, et al. Effects of YM175 on bone positively correlates with its concentration in bone. J Bone Miner Res 1990; 5(Suppl)1:S245. Google Scholar
Kawamuki K, Abe T, Kudo M, et al. Prophylactic and therapeutic effect of YM175 on bone loss induced by ovariectomy and immobilization in rats. J Bone Miner Res 1991; 6(Suppl) 1:S214. Google Scholar
Bijvoet OLM, Hosking DJ, Lemkes HHPJ, Reitsma PH, Frijlink W. Development in the treatment of Paget's Disease. In: Cop et al., eds. Endocrinology of calcium metabolism. Amsterdam. Excerpta Medica, 1978; 421:48–54. Google Scholar
Boonekamp PM, Löwik CWGM, van der Wee-Pals LJA, van Wijk-van Lennep MLL, Bijvoet OLM. Enhancement of the inhibitory action of APD on the transformation of osteoclast precursors into resorbing cells after dimethylation of the amino group. Bone Miner 1987; 2:29–42. Google Scholar
Green JR, Müller K, Jaeggi KA. Pharmacological characterization of bisphosphonate compounds containing a basic nitrogen substituent. Bone Miner 1992; 17(Suppl)1:S12. Google Scholar
Miller SC, Jee WSS. The effect of dichloromethylenediphosphonate, a pyrophosphate analog, on bone and bone cell structure in the growing rat. Anat Rec 1979; 193:439–62. Google Scholar
Flanagan AM, Chambers TJ. Dichloromethylenebisphosphonate (Cl2MBP) inhibits bone resorption through injury to osteoclasts that resorb Cl2MBP-coated bone. Bone Miner 1989; 6:33–43. Google Scholar
Sato M, Grasser W. Effects of bisphosphonates on isolated rat osteoclasts as examined by reflected light microscopy. J Bone Miner Res 1990; 5:31–40. Google Scholar
Sato M, Glasser W, Endo N, et al. Bisphosphonate action: alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991; 88:2095–105. Google Scholar
Sahni M, Collin P, Felix R, Fleisch H. Direct effect of bisphosphonates on isolated rat osteoclasts. Bone Miner 1992; 17 (Suppl)1:S17. Google Scholar
Sahni M, Guenther H, Martin TJ, Fleisch H. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Bone Miner Res 1992; 7(Suppl)a:S141. Google Scholar
Boonekamp PM, van der Wee-Pals LJA, van Wijk-Lennep MML, Thesing CW, Bijvoet OLM. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner 1986; 1:27–39. Google Scholar
Löwik CWGM, Pluijm G van der, van der Wee-Pals LJA, van Bloys Treslong-de Groot H, Bijvoet OLM. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts: the effect of a bisphosphonate. J Bone Miner Res 1988; 3:185–91. Google Scholar
Hughes DE, MacDonald BR, Russell RGG, Gowen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of hman bone marrow. J Clin Invest 1989; 83:1930–5. Google Scholar
Van der Pluijm G, Löwik CWGM, De Groot H, et al. Modulation of PTH-stimulated osteoclastic resorption by bisphosphonates in fetal mouse bone explants. J Bone Miner Res 1991; 6:1203–10. Google Scholar
King WR, Francis MD, Michael WR. Effect of disodium ethane-1-hydroxy-1,l-diphosphonate on bone formation. Clin Orthop 1971; 78:251–70. Google Scholar
Flora L, Hassing GS, Parfitt AM, Villanueva AR. Comparative skeletal effects of two diphosphonates in dogs. Metab Bone Dis Rel Res 1980; 2:389–407. Google Scholar
Lin JH, Duggan DE, Chen I-W, Ellsworth RL. Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals. Drug Met Dispos 1991; 19:926–32. Google Scholar
Heaney RP, Saville PD. Etidronate disodium in postmenopausal osteoporosis. Clin Pharmacol Ther 1976; 20:593–604. Google Scholar
Anderson C, Cape RDT, Crilly RG, Hodsman AB, Wolfe BMJ. Preliminary observations of a form of coherence therapy for osteoporosis. Calcif Tissue Int 1984; 36:341–3. Google Scholar
Hesch RD, Heck J, Delling G, et al. Results of a stimulatory therapy of low bone metabolism in osteoporosis with (1–38)hPTH and diphosphonate EHDP. Protocol of study I, osteoporosis trial, Hannover. Klin Wochenschr 1988; 66:976–84. Google Scholar
Pacifici R, McMurtry C. Vered I, Rupich R, Avioli LV. Coherence therapy does not prevent axial bone loss in osteoporotic women: a preliminary comparative study. J Clin Endocrinol Metab 1988; 88:747–53. Google Scholar
Hodsman AB. Effects of cyclical therapy for osteoporosis using an oral regimen of inorganic phosphate and sodium etidronate: a clinical and bone histomorphometric study. Bone Miner 1989; 5:201–12. Google Scholar
Silberstein EB, Schnur W. Cyclic oral phosphate and etidronate increase femoral and lumbar bone mineral density and reduce lumbar spine fracture rate over three years. J Nucl Med 1992; 33/1:1–5. Google Scholar
Watts NB, Harris ST, Genant HK, et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med 1990; 323:73–9. Google Scholar
Storm T, Thamsborg G, Steiniche T, Genant HK, Soerensen OH. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 1990; 322:1265–71. Google Scholar
Chesnut CH. Drug therapy: calcitonin, bisphosphonates, anabolic steroids, and hPTH (1–34). In: Riggs L, Melton LJ, eds. Osteoporosis, etiology, diagnosis and management. New York: Raven Press, 1988:403–14. Google Scholar
Minaire P, Bérard E, Meunier PJ, Edouard C, Goedert G, Pilonchéry G. Effects of disodium dichloromethylene diphosphonate on bone loss in paraplegic patients. J Clin Invest 1981; 68:1086–92. Google Scholar
Valkema R, Vismans F-JFE, Papapoulos SE, Pauwels EKJ, Bijvoet OLM. Maintained improvement in calcium balance and bone mineral content in patients with osteoporosis treated with the bisphosphonate APD. Bone Miner 1989; 5:183–92. Google Scholar
Fromm GA, Vega E, Plantalech L, Galich AM, Mautalen CA. Differential action of pamidronate on trabecular and cortical bone in women with involutional osteoporosis. Osteoporosis Int 1991;1:129–33. Google Scholar
Devogelaer JP, Nagant de Deuxchaisnes C. Treatment of involutional osteoporosis with the bisphosphonate APD (disodium pamidronate): non-linear increase of lumbar bone mineral density. In: Christiansen C, Overgaard K, eds. Third International Symposium on Osteoporosis, Copenhagen, Denmark. Copenhagen: Osteopress, 1990:1507–9. Google Scholar
Thiébaud D, Melchior-Capiot J, Maillard A-B, et al. Comparison of intravenous pamidronate (APD) and oral fluoride in the treatment of postmenopausal osteoporosis. Bone Miner 1992; 17/S1:A52.
Reid IR, Alexander CJ, King AR, Ibbertson HK. Prevention of steroid-induced osteoporosis with (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD). Lancet 1988; i:143–6. Google Scholar
Hoekman K, Papapoulos SE, Peters ACB, Bijvoet OLM. Characteristics and bisphosphonate treatment of a patient with juvenile osteoporosis. J Clin Endocrinol Metab 1985; 61:952–6. Google Scholar
Reginster JY, Deroisy D, Denis D, et al. Prevention of postmenopausal bone loss by tiludronate. Lancet 1989; No. 2678/8679:1469–71. Google Scholar
Passeri M, Baroni MC, Pedrazzoni M, et al. Intermittent treatment with intravenous 4-amino-1-hydroxybutylidene-1,1-bisphosphonate (AHBuBP) in the therapy of postmenopausal osteoporosis. Bone Miner 1991; 15:237–48. Google Scholar
Pallot-Prades B, Chappard D, Tavan P, Prallet B, Riffat G, Alexandre C. Etude histomorphométrique osseuse dans l'ostéoporose fracturaire d'involution traitée par l'éthane-1, hydroxy-1,1 bisphosphonate (étidronate) pendant un an. Rev Rhumat 1991; 58:771–6. Google Scholar
Steiniche T, Hasling C, Charles P, Eriksen EF, Melsen F, Mosekilde L. The effects of etidronate on trabecular bone remodeling in postmenopausal spinal osteoporosis: a randomized study comparing intermittent treatment and an ADFR regime. Bone 1991; 12:155–63. Google Scholar
Ott SM, Woodson GC, Huffer W. Bone histomorphometric changes in women with postmenopausal osteoporosis treated with etidronate. In: Christiansen C, Overgaard K, eds. Third International Symposium on Osteoporosis, Copenhagen, Denmark. Copenhagen: Osteopress, 1990:1318–22. Google Scholar