Stetler-Stevenson, W.G., Liotta, L.A. and Kleiner, D.E.,Role of matrix metalloproteinases in tumour invasion and metastasis, FASEB J., 7 (1993) 1434–1441. PubMed Google Scholar
Birkedal-Hansen, H.,Proteolytic remodeling of extracellular matrix, Curr. Opin. Cell Biol, 7 (1995) 728–735. PubMed Google Scholar
Stetler-Stevenson, W.G.,Type IV collagenases in tumor invasion and metastasis, Cancer Metastasis Rev., 9 (1990) 289–303. PubMed Google Scholar
Garbisa, S., Pozzati, R., Muschel, R.J., Saffiotti, U., Ballin, M., Goldfarb, R.H., Khoury, G. and Liotta, L.A.,Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a, Cancer Res., 47 (1987) 1523–1528. PubMed Google Scholar
Bernhard, E.J., Gruber, S.B. and Muschel R.J.,Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinasel collagenase) to the metastatic phenotype in transformed rat embryo cells, Proc. Natl. Acad. Sci. USA, 91 (1994) 4293–4297. PubMed Google Scholar
Auerbach, W. and Auerbach, R.,Angiogenesis inhibition: A review, Pharmacol. Ther., 63 (1994) 265–311. PubMed Google Scholar
Van den Hoof, A.,Stromal involvement in malignant growth, Adv. Cancer Res., 50 (1988) 159–196. PubMed Google Scholar
Murphy, G. and Docherty, A.J.P.,The matrix metalloproteinases and their inhibitors, Am. J. Respir. Cell Mol. Biol., 7 (1992) 120–125. PubMed Google Scholar
DeClerck, Y.A. and Imren, S.,Protease inhibitors: Role and potential therapeutic use in human cancer, Eur. J. Cancer, 30A (1994) 2170–2180. PubMed Google Scholar
Schultz, R.M., Silberman, S., Persky, B., Bajkowsky, A.S. and Carmichael, D.F.,Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and colonization by murine B16F10 melanoma cells, Cancer Res., 52 (1988) 5539–5545. Google Scholar
Takigawa, M., Nishida, Y., Suzuki, F., Kishi, J., Yamashita, K. and Hayakawa, T.,Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2), Biochem. Biophys. Res. Commun., 171 (1990) 1264–1271. PubMed Google Scholar
Albini, A., Melchiori, A., Santi, L., Liotta, L.A., Brown, P.D. and Stetler-Stevenson, W.G.,Tumor cell invasion inhibited by TIMP-2, J. Natl. Cancer Inst., 83 (1991) 775–779. PubMed Google Scholar
Khokha, R.,Suppression of the tumorigenic and metastasis abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1, J. Natl. Cancer Inst., 86 (1994) 299–303. PubMed Google Scholar
Koop, S., Khokha, R., Schmidt, E.E., MacDonald, I.C., Morris, V.L., Chambers, A.F. and Groom, A.C.,Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumour growth, Cancer Res., 54 (1994) 4791–4797. PubMed Google Scholar
Montgomery, M.P., Mueller, B.M., Reisfeld, R.A., Taylor, S.M. and DeClerck, Y.A.,Effect of tissue inhibitor of matrix metalloprotease-2 expression on the growth and spontaneous metastasis of a human melanoma cell line, Cancer Res., 54 (1994) 5467–5473. PubMed Google Scholar
O'Shea, M., Willenbrock, F., Williamson, R.A., Cockett, M.I., Freedman, R.B., Reynolds, J.J., Docherty, A.J.P. and Murphy, G.,Site-directed mutations that alter the inhibitory activity of the tissue inhibitor of metalloproteinases-1: Importance of the N-terminal region between cysteine3 and cysteine 13, Biochemistry, 31 (1992) 10146–10152. PubMed Google Scholar
Bodden, M.K., Harber, G.J., Birkedal-Hansen, G., Windsor, L.J., Caterina, N.C.M., Engler, J.A. and Birkedal-Hansen, H.,Functional domains of human TIMP-1 (tissue inhibitor of metalloproteinases), J. Biol. Chem., 269 (1994) 18943–18952. PubMed Google Scholar
Melchiori, A., Albini, A., Ray, J.M. and Stetler-Stevenson, W.G.,Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment, Cancer Res., 52 (1992) 2353–2356. PubMed Google Scholar
Beeley, N.R., Ansel, P.R.J. and Docherty, A.J.P,Inhibitors of matrix metalloproteinases (MMP's), Curr. Opin. Ther. Patents, 4 (1994) 7–16. Google Scholar
Gray, R.D., Saneii, H.H. and Spatola, A.F.,Metal binding peptide inhibitors of vertebrate collagenase, Biochem. Biophys. Res. Commun., 101 (1981) 1251–1258. PubMed Google Scholar
Moore, W.M. and Spilburg, C.A.,Purification of human collagenases with a hydroxamic acid affinity column, Biochemistry, 25 (1986) 5189–5195. PubMed Google Scholar
Houghten, R.A.,The broad utility of soluble peptide libraries for drug discovery, Gene, 137 (1993) 7–11. PubMed Google Scholar
Houghten, R.A., Clemencia, P., Blondelle, S.E., Appel, J. R., Dooley, C.T. and Cuervo, J.H.,Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature, 354 (1991) 84–86. PubMed Google Scholar
Furka, A., Sebestyen, F., Asgedom, M. and Dibo, G.,General method for rapid synthesis of multicomponent peptide mixtures, Int. J. Pept. Protein Res., 37 (1991) 487–493. PubMed Google Scholar
Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmierski, W.M. and Knapp, R.J.,A new type of synthetic peptide library for identifying ligand-binding activity, Nature, 354 (1991) 82–84. PubMed Google Scholar
Pyke, C., Ralfkiaer, E., Triggvason, K. and Dano, K.,Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer, Am. J. Pathol., 142 (1993) 359–365. PubMed Google Scholar
Wolf, C., Lefebvre, O., Rouyer, N., Chenard, M.P., Bellocq, J.P., Rio, M.C., Chambon, P. and Basset, P.,Proteases d'origine stromale et progression tumorale, Med. Sci., 10 (1994) 507–515. Google Scholar
Heussen, C. and Dowdle, E.B.,Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates, Anal. Biochem., 102 (1980) 196–202. PubMed Google Scholar
Montgomery, A.M.P., DeClerck, Y.A., Langley, K.E., Reisfeld, R.A. and Mueller, B.M.,Melanoma-mediated dissolution of extracellular matrix. Contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways, Cancer Res., 53 (1993) 693–700. PubMed Google Scholar
Bickett, D.M., Green, M.D., Berman, J., Dezube, M., Howe, A.S., Brown, P.J., Roth, J.T. and McGeehan, G.M.,A high throughput fluorogenic substrate for interstitial collagenase (MMP-1) and gelatinase (MMP-9), Anal. Biochem., 212 (1993) 58–64. PubMed Google Scholar
Zuckermann, R.N., Kerr, J.M., Siani, M.A., Banville, S.C. and Santi, D.V.,Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis, Proc. Natl. Acad. Sci. USA, 89 (1992) 4505–4509. PubMed Google Scholar
Boutin, J.A., Hennig, P., Lambert, P.H., Bertin, S., Petit, L., Mahieu, J.P., Serkiz, B., Volland, J.P. and Fauchère, J.-L.,Combinatorial peptide libraries: Robotic synthesis and analysis by nuclear magnetic resonance, mass spectrometry, tandem mass spectrometry, and high-performance capillary electrophoresis techniques, Anal. Biochem., 234 (1996) 126–141. PubMed Google Scholar
Kleiner, D.E. and Stetler-Stevenson, W.G.,Quantitative zymography: Detection of picogram quantities of gelatinases, Anal. Biochem., 218 (1994) 325–329. PubMed Google Scholar
Davies, B., Brown, P.D., East, N., Crimmin, M.J. and Balkwill, F.R.,A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenographs, Cancer Res., 53 (1993) 2087–2091. PubMed Google Scholar
Owens, R.A., Gesellchen, P.D., Houchins, B.J. and Dimarchi, R.D.,The rapid identification of HIV protease inhibitors through the synthesis and screening of defined peptide mixtures, Biochem. Biophys. Res. Commun., 181 (1991) 402–409. PubMed Google Scholar
Eichler, J. and Houghten, R.A.,Identification of substrate-analogue trypsin inhibitors through the screening of synthetic peptide combinatorial libraries, Biochemistry, 41 (1993) 11035–11041. Google Scholar
Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.W. and Gordon, E.M.,Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries, J. Med. Chem., 37 (1994) 1233–1251. PubMed Google Scholar
Gordon, E.M., Barrett, R., Dower, W.J., Fodor, S.P.W. and Gallop, M.A.,Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies and future directions, J. Med. Chem., 37 (1994) 1385–1401. PubMed Google Scholar
Krchňák, V. and Lebl, M.,Synthetic library techniques: Subjective (biased and generic) thoughts and views, Mol. Div., 1 (1995) 193–216. Google Scholar
Lebl, M., Krchňák, V., Sepetov, N.F., Seligmann, B., Strop, P., Felder, S. and Lam, K.S.,One-bead-one-structure combinatorial libraries, Biopolymers, 37 (1995) 177–195. PubMed Google Scholar
Smith, M.M., Shi, L. and Navre, M.,Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries, J. Biol. Chem., 270 (1995) 6440–6449. PubMed Google Scholar
Eichler, J., Lucka, A. W. and Houghten, R.A.,Cyclic peptide template combinatorial libraries: Synthesis and identification of chymotrypsin inhibitors, Pept. Res., 7 (1994) 300–307. PubMed Google Scholar
Meldal, M. and Svendsen, I.B.,Direct visualization of enzyme inhibitors using a portion mixing inhibitor library containing a quenched fluorogenic peptide substrate. Part 1. Inhibitors for subtilisin Calsberg, J. Chem. Soc. Perkin Trans. I, (1995) 1591–1596. Google Scholar
Seligmann, B., Abdul-Latif, F., Al-Obeidi, F., Flegelova, Z., Issakova, O., Kocis, P., Krchňák, V., Lam, K., Lebl, M., Ostrem, J., Safar, P., Sepetov, N., Stierandova, A., Strop, P. and Wildgoose, P.,The construction and use of peptide and non-peptidic combinatorial libraries to discover enzyme inhibitors, Eur. J. Med. Chem., 30S (1995) 319s-335s. Google Scholar
Yankeelov, J.A., Wacker, W.B. and Schweri, M.M.,Radial diffusion assay of tissue collagenase and its application in evaluation of collagenase inhibitors, Biochim. Biophys. Acta, 482 (1977) 159–172. PubMed Google Scholar
Hare, P., Scott-Burden, T. and Woods, D.R.,Characterization of extracellular alkaline proteases and collagenase induction in Vibrio Alginolyticus, J. Gen. Microb., 129 (1983) 1141–1147. Google Scholar
Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D., Liotta, L.A., Stetler-Stevenson, W.G. and Raz, A.,Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9, Biochemistry, 33 (1994) 14109–14114. PubMed Google Scholar
Nguyen, Q., Murphy, G., Hughes, C.E., Mort, J.S. and Roughley, P.J.,Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein, Biochem. J., 295 (1993) 595–598. PubMed Google Scholar
Windsor, L.J., Bodden, M.K, Birkedal-Hansen, B., Engler, J.A. and Birkedal-Hansen. H.,Mutational analysis of residues in and around the active site of human fibroblast-type collagenase, J. Biol. Chem., 269 (1994) 26201–26207. PubMed Google Scholar
Vallee, B.L. and Auld, D.S.,Zinc coordination, function, and structure of zinc enzymes and other proteins, Biochemistry, 29 (1990) 5647–5659. PubMed Google Scholar
Stetler-Stevenson, W.G., Talano, J.A., Gallagher, M.E., Krutzsch, H.C. and Liotta, L.A.,Inhibition of human type IV collagenase by a highly conserved peptide sequence derived from its prosegment, Am. J. Med. Sci., 302 (1991) 163–170. PubMed Google Scholar
Fotouhi, N., Lugo, A., Visnick, M., Lusch, L., Walsky, R., Coffey, J.W. and Hanglow, A.C.,Potent peptide inhibitors of stromelysin based on the prodomain region of matrix metalloproteinases, J. Biol. Chem., 269 (1994) 30227–30231. PubMed Google Scholar
Springman, E.B., Nagase, H., Birkedal-Hansen, H. and Van Wart, H.E.,Zinc content and function in human fibroblast collagenase, Biochemistry, 34 (1995) 15713–15720. PubMed Google Scholar
Otsuka, M., Fujita, M., Aoki, T., Ishii, S., Sugiura, Y., Yamamoto, T. and Inoue, J.I.,Novel zinc chelators with dual activity in the inhibition of the κB site-binding proteins HIV-EP1 and NF-κB, J. Med. Chem., 38 (1995) 3264–3270. PubMed Google Scholar