Selection of a histidine-containing inhibitor of gelatinases through deconvolution of combinatorial tetrapeptide libraries (original) (raw)

References

  1. Brown, P.D.,Matrix metalloproteinase inhibitors: A new class of anticancer agent, Curr. Opin. Invest. Drugs, 2 (1993) 617–626.
    Google Scholar
  2. Woessner Jr., J.F.,Matrix metalloproteinases and their inhibitors in connective tissue remodeling, FASEB J., 5 (1991) 2145–2154.
    PubMed Google Scholar
  3. Matrisian, L.M.,The matrix degrading metalloproteinases, BioEssays, 14 (1992) 455–463.
    PubMed Google Scholar
  4. Stetler-Stevenson, W.G., Liotta, L.A. and Kleiner, D.E.,Role of matrix metalloproteinases in tumour invasion and metastasis, FASEB J., 7 (1993) 1434–1441.
    PubMed Google Scholar
  5. Birkedal-Hansen, H.,Proteolytic remodeling of extracellular matrix, Curr. Opin. Cell Biol, 7 (1995) 728–735.
    PubMed Google Scholar
  6. Stetler-Stevenson, W.G.,Type IV collagenases in tumor invasion and metastasis, Cancer Metastasis Rev., 9 (1990) 289–303.
    PubMed Google Scholar
  7. Garbisa, S., Pozzati, R., Muschel, R.J., Saffiotti, U., Ballin, M., Goldfarb, R.H., Khoury, G. and Liotta, L.A.,Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a, Cancer Res., 47 (1987) 1523–1528.
    PubMed Google Scholar
  8. Bernhard, E.J., Gruber, S.B. and Muschel R.J.,Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinasel collagenase) to the metastatic phenotype in transformed rat embryo cells, Proc. Natl. Acad. Sci. USA, 91 (1994) 4293–4297.
    PubMed Google Scholar
  9. Auerbach, W. and Auerbach, R.,Angiogenesis inhibition: A review, Pharmacol. Ther., 63 (1994) 265–311.
    PubMed Google Scholar
  10. Van den Hoof, A.,Stromal involvement in malignant growth, Adv. Cancer Res., 50 (1988) 159–196.
    PubMed Google Scholar
  11. Murphy, G. and Docherty, A.J.P.,The matrix metalloproteinases and their inhibitors, Am. J. Respir. Cell Mol. Biol., 7 (1992) 120–125.
    PubMed Google Scholar
  12. DeClerck, Y.A. and Imren, S.,Protease inhibitors: Role and potential therapeutic use in human cancer, Eur. J. Cancer, 30A (1994) 2170–2180.
    PubMed Google Scholar
  13. Schultz, R.M., Silberman, S., Persky, B., Bajkowsky, A.S. and Carmichael, D.F.,Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and colonization by murine B16F10 melanoma cells, Cancer Res., 52 (1988) 5539–5545.
    Google Scholar
  14. Takigawa, M., Nishida, Y., Suzuki, F., Kishi, J., Yamashita, K. and Hayakawa, T.,Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2), Biochem. Biophys. Res. Commun., 171 (1990) 1264–1271.
    PubMed Google Scholar
  15. Albini, A., Melchiori, A., Santi, L., Liotta, L.A., Brown, P.D. and Stetler-Stevenson, W.G.,Tumor cell invasion inhibited by TIMP-2, J. Natl. Cancer Inst., 83 (1991) 775–779.
    PubMed Google Scholar
  16. Khokha, R.,Suppression of the tumorigenic and metastasis abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1, J. Natl. Cancer Inst., 86 (1994) 299–303.
    PubMed Google Scholar
  17. Koop, S., Khokha, R., Schmidt, E.E., MacDonald, I.C., Morris, V.L., Chambers, A.F. and Groom, A.C.,Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumour growth, Cancer Res., 54 (1994) 4791–4797.
    PubMed Google Scholar
  18. Montgomery, M.P., Mueller, B.M., Reisfeld, R.A., Taylor, S.M. and DeClerck, Y.A.,Effect of tissue inhibitor of matrix metalloprotease-2 expression on the growth and spontaneous metastasis of a human melanoma cell line, Cancer Res., 54 (1994) 5467–5473.
    PubMed Google Scholar
  19. O'Shea, M., Willenbrock, F., Williamson, R.A., Cockett, M.I., Freedman, R.B., Reynolds, J.J., Docherty, A.J.P. and Murphy, G.,Site-directed mutations that alter the inhibitory activity of the tissue inhibitor of metalloproteinases-1: Importance of the N-terminal region between cysteine3 and cysteine 13, Biochemistry, 31 (1992) 10146–10152.
    PubMed Google Scholar
  20. Bodden, M.K., Harber, G.J., Birkedal-Hansen, G., Windsor, L.J., Caterina, N.C.M., Engler, J.A. and Birkedal-Hansen, H.,Functional domains of human TIMP-1 (tissue inhibitor of metalloproteinases), J. Biol. Chem., 269 (1994) 18943–18952.
    PubMed Google Scholar
  21. Melchiori, A., Albini, A., Ray, J.M. and Stetler-Stevenson, W.G.,Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment, Cancer Res., 52 (1992) 2353–2356.
    PubMed Google Scholar
  22. Beeley, N.R., Ansel, P.R.J. and Docherty, A.J.P,Inhibitors of matrix metalloproteinases (MMP's), Curr. Opin. Ther. Patents, 4 (1994) 7–16.
    Google Scholar
  23. Gray, R.D., Saneii, H.H. and Spatola, A.F.,Metal binding peptide inhibitors of vertebrate collagenase, Biochem. Biophys. Res. Commun., 101 (1981) 1251–1258.
    PubMed Google Scholar
  24. Moore, W.M. and Spilburg, C.A.,Purification of human collagenases with a hydroxamic acid affinity column, Biochemistry, 25 (1986) 5189–5195.
    PubMed Google Scholar
  25. Houghten, R.A.,The broad utility of soluble peptide libraries for drug discovery, Gene, 137 (1993) 7–11.
    PubMed Google Scholar
  26. Houghten, R.A., Clemencia, P., Blondelle, S.E., Appel, J. R., Dooley, C.T. and Cuervo, J.H.,Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature, 354 (1991) 84–86.
    PubMed Google Scholar
  27. Furka, A., Sebestyen, F., Asgedom, M. and Dibo, G.,General method for rapid synthesis of multicomponent peptide mixtures, Int. J. Pept. Protein Res., 37 (1991) 487–493.
    PubMed Google Scholar
  28. Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmierski, W.M. and Knapp, R.J.,A new type of synthetic peptide library for identifying ligand-binding activity, Nature, 354 (1991) 82–84.
    PubMed Google Scholar
  29. Pyke, C., Ralfkiaer, E., Triggvason, K. and Dano, K.,Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer, Am. J. Pathol., 142 (1993) 359–365.
    PubMed Google Scholar
  30. Wolf, C., Lefebvre, O., Rouyer, N., Chenard, M.P., Bellocq, J.P., Rio, M.C., Chambon, P. and Basset, P.,Proteases d'origine stromale et progression tumorale, Med. Sci., 10 (1994) 507–515.
    Google Scholar
  31. Heussen, C. and Dowdle, E.B.,Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates, Anal. Biochem., 102 (1980) 196–202.
    PubMed Google Scholar
  32. Montgomery, A.M.P., DeClerck, Y.A., Langley, K.E., Reisfeld, R.A. and Mueller, B.M.,Melanoma-mediated dissolution of extracellular matrix. Contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways, Cancer Res., 53 (1993) 693–700.
    PubMed Google Scholar
  33. Bickett, D.M., Green, M.D., Berman, J., Dezube, M., Howe, A.S., Brown, P.J., Roth, J.T. and McGeehan, G.M.,A high throughput fluorogenic substrate for interstitial collagenase (MMP-1) and gelatinase (MMP-9), Anal. Biochem., 212 (1993) 58–64.
    PubMed Google Scholar
  34. Zuckermann, R.N., Kerr, J.M., Siani, M.A., Banville, S.C. and Santi, D.V.,Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis, Proc. Natl. Acad. Sci. USA, 89 (1992) 4505–4509.
    PubMed Google Scholar
  35. Boutin, J.A., Hennig, P., Lambert, P.H., Bertin, S., Petit, L., Mahieu, J.P., Serkiz, B., Volland, J.P. and Fauchère, J.-L.,Combinatorial peptide libraries: Robotic synthesis and analysis by nuclear magnetic resonance, mass spectrometry, tandem mass spectrometry, and high-performance capillary electrophoresis techniques, Anal. Biochem., 234 (1996) 126–141.
    PubMed Google Scholar
  36. Kleiner, D.E. and Stetler-Stevenson, W.G.,Quantitative zymography: Detection of picogram quantities of gelatinases, Anal. Biochem., 218 (1994) 325–329.
    PubMed Google Scholar
  37. Davies, B., Brown, P.D., East, N., Crimmin, M.J. and Balkwill, F.R.,A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenographs, Cancer Res., 53 (1993) 2087–2091.
    PubMed Google Scholar
  38. Owens, R.A., Gesellchen, P.D., Houchins, B.J. and Dimarchi, R.D.,The rapid identification of HIV protease inhibitors through the synthesis and screening of defined peptide mixtures, Biochem. Biophys. Res. Commun., 181 (1991) 402–409.
    PubMed Google Scholar
  39. Eichler, J. and Houghten, R.A.,Identification of substrate-analogue trypsin inhibitors through the screening of synthetic peptide combinatorial libraries, Biochemistry, 41 (1993) 11035–11041.
    Google Scholar
  40. Gallop, M.A., Barrett, R.W., Dower, W.J., Fodor, S.P.W. and Gordon, E.M.,Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries, J. Med. Chem., 37 (1994) 1233–1251.
    PubMed Google Scholar
  41. Gordon, E.M., Barrett, R., Dower, W.J., Fodor, S.P.W. and Gallop, M.A.,Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies and future directions, J. Med. Chem., 37 (1994) 1385–1401.
    PubMed Google Scholar
  42. Krchňák, V. and Lebl, M.,Synthetic library techniques: Subjective (biased and generic) thoughts and views, Mol. Div., 1 (1995) 193–216.
    Google Scholar
  43. Lebl, M., Krchňák, V., Sepetov, N.F., Seligmann, B., Strop, P., Felder, S. and Lam, K.S.,One-bead-one-structure combinatorial libraries, Biopolymers, 37 (1995) 177–195.
    PubMed Google Scholar
  44. Smith, M.M., Shi, L. and Navre, M.,Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries, J. Biol. Chem., 270 (1995) 6440–6449.
    PubMed Google Scholar
  45. Eichler, J., Lucka, A. W. and Houghten, R.A.,Cyclic peptide template combinatorial libraries: Synthesis and identification of chymotrypsin inhibitors, Pept. Res., 7 (1994) 300–307.
    PubMed Google Scholar
  46. Meldal, M. and Svendsen, I.B.,Direct visualization of enzyme inhibitors using a portion mixing inhibitor library containing a quenched fluorogenic peptide substrate. Part 1. Inhibitors for subtilisin Calsberg, J. Chem. Soc. Perkin Trans. I, (1995) 1591–1596.
    Google Scholar
  47. Seligmann, B., Abdul-Latif, F., Al-Obeidi, F., Flegelova, Z., Issakova, O., Kocis, P., Krchňák, V., Lam, K., Lebl, M., Ostrem, J., Safar, P., Sepetov, N., Stierandova, A., Strop, P. and Wildgoose, P.,The construction and use of peptide and non-peptidic combinatorial libraries to discover enzyme inhibitors, Eur. J. Med. Chem., 30S (1995) 319s-335s.
    Google Scholar
  48. Yankeelov, J.A., Wacker, W.B. and Schweri, M.M.,Radial diffusion assay of tissue collagenase and its application in evaluation of collagenase inhibitors, Biochim. Biophys. Acta, 482 (1977) 159–172.
    PubMed Google Scholar
  49. Hare, P., Scott-Burden, T. and Woods, D.R.,Characterization of extracellular alkaline proteases and collagenase induction in Vibrio Alginolyticus, J. Gen. Microb., 129 (1983) 1141–1147.
    Google Scholar
  50. Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D., Liotta, L.A., Stetler-Stevenson, W.G. and Raz, A.,Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9, Biochemistry, 33 (1994) 14109–14114.
    PubMed Google Scholar
  51. Nguyen, Q., Murphy, G., Hughes, C.E., Mort, J.S. and Roughley, P.J.,Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein, Biochem. J., 295 (1993) 595–598.
    PubMed Google Scholar
  52. Windsor, L.J., Bodden, M.K, Birkedal-Hansen, B., Engler, J.A. and Birkedal-Hansen. H.,Mutational analysis of residues in and around the active site of human fibroblast-type collagenase, J. Biol. Chem., 269 (1994) 26201–26207.
    PubMed Google Scholar
  53. Vallee, B.L. and Auld, D.S.,Zinc coordination, function, and structure of zinc enzymes and other proteins, Biochemistry, 29 (1990) 5647–5659.
    PubMed Google Scholar
  54. Stetler-Stevenson, W.G., Talano, J.A., Gallagher, M.E., Krutzsch, H.C. and Liotta, L.A.,Inhibition of human type IV collagenase by a highly conserved peptide sequence derived from its prosegment, Am. J. Med. Sci., 302 (1991) 163–170.
    PubMed Google Scholar
  55. Fotouhi, N., Lugo, A., Visnick, M., Lusch, L., Walsky, R., Coffey, J.W. and Hanglow, A.C.,Potent peptide inhibitors of stromelysin based on the prodomain region of matrix metalloproteinases, J. Biol. Chem., 269 (1994) 30227–30231.
    PubMed Google Scholar
  56. Regan, L.,Protein design: Novel metal-binding sites, Trends Biochem. Sci., 20 (1995) 280–285.
    PubMed Google Scholar
  57. Springman, E.B., Nagase, H., Birkedal-Hansen, H. and Van Wart, H.E.,Zinc content and function in human fibroblast collagenase, Biochemistry, 34 (1995) 15713–15720.
    PubMed Google Scholar
  58. Otsuka, M., Fujita, M., Aoki, T., Ishii, S., Sugiura, Y., Yamamoto, T. and Inoue, J.I.,Novel zinc chelators with dual activity in the inhibition of the κB site-binding proteins HIV-EP1 and NF-κB, J. Med. Chem., 38 (1995) 3264–3270.
    PubMed Google Scholar

Download references