Biophysical basis of glomerular permselectivity (original) (raw)

References

  1. Anderson, J.L., Quinn, J.A. 1974. Restricted transport in small pores. A model for steric exclusion and hindered particle motion.Biophys. J. 14:130–150
    PubMed Google Scholar
  2. Arturson, G., Groth, T., Grotte, G. 1971. Human glomerular membrane porosity and filtration pressure: Dextran clearance data analyzed by theoretical models.Clin. Sci. 40:137–158
    PubMed Google Scholar
  3. Bennett, C.M., Glassock, R.J., Chang, R.L.S., Deen, W.M., Robertson, C.R., Brenner, B.M. 1976. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using dextran sulfate.J. Clin. Invest. 57:1287–1294
    PubMed Google Scholar
  4. Blau, E.B., Haas, D.E. 1973. Glomerular sialic acid and proteinuria in human renal disease.Lab. Invest. 28:477–481
    PubMed Google Scholar
  5. Blau, E.B., Michael, A.F. 1972. Rat glomerular glycoprotein composition and metabolism in aminonucleoside nephrosis.Proc. Soc. Expt. Biol. Med. 141:164–172
    Google Scholar
  6. Bohrer, M.P., Baylis, C., Humes, H.D., Glassock, R.J., Robertson, C.R., Brenner, B.M. 1978. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations.J. Clin. Invest. 61:72–78
    PubMed Google Scholar
  7. Bohrer, M.P., Baylis, C., Robertson, C.R., Brenner, B.M. 1977. Mechanism of the puromycin-induced defects in the transglomerular passage of water and macromolecules.J. Clin. Invest. 60:152–161
    PubMed Google Scholar
  8. Bohrer, M.P., Deen, W.M., Robertson, C.R., Brenner, B.M. 1977. Mechanism of angiotensin II — induced proteinuria in the rat.Am. J. Physiol. 233:_F_13-_F_21
    PubMed Google Scholar
  9. Bohrer, M.P., Deen, W.M., Robertson, C.R., Troy, J.L., Brenner, B.M. 1979. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall.J. Gen. Physiol. 74:583–593
    PubMed Google Scholar
  10. Brenner, B.M., Baylis, C., Deen, W.M. 1976. Transport of molecules across renal glomerular capillaries.Physiol. Rev. 56:502–534
    PubMed Google Scholar
  11. Buerkert, J.E., Mor, J., Murray, B.N., Robson, A.M. 1976. Glomerular permeability in disease: A proposed role of the glomerular epithelial cell.(Abstr.) Proc. Am. Soc. Nephrol. 9:69
    Google Scholar
  12. Carrie, B.J., Myers, B.D. 1980. Proteinuria and functional characteristics of the glomerular barrier in diabetic nephropathy.Kidney Int. 19:669–676
    Google Scholar
  13. Caulfield, J.P., Farquhar, M.G. 1976. Distribution of anionic sites in normal and nephrotic glomerular basement membranes.(Abstr.) J. Cell Biol. 70:92_a_
    Google Scholar
  14. Chang, R.L.S., Deen, W.M., Robertson, C.R., Brenner, B.M. 1975. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions.Kidney Int. 8:212–218
    PubMed Google Scholar
  15. Chang, R.L.S., Deen, W.M., Robertson, C.R., Bennett, C.M., Glassock, R.J., Brenner, B.M. 1976. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using neutral dextran.J. Clin. Invest 57:1272–1286
    PubMed Google Scholar
  16. Chang, R.L.S., Robertson, C.R., Deen, W.M., Brenner, B.M. 1975. Permselectivity of the glomerular capillary wall to macromolecules: I. Theoretical considerations.Biophys. J. 15:861–886
    PubMed Google Scholar
  17. Chang, R.L.S., Ueki, I.F., Troy, J.L., Deen, W.M., Robertson, C.R., Brenner, B.M. 1975. Permselectivity of the glomerular capillary wall to macromolecules: II. Experimental studies in rats using neutral dextran.Biophys. J. 15:887–906
    PubMed Google Scholar
  18. De Bats, A., Gordon, A.H., Rhodes, E.L. 1974. Variations in glomerular sialic acid content in diabetes and as the result of aging.Clin. Sci. Molec. Med. 47:93–95
    Google Scholar
  19. Deen, W.M., Bohrer, M.P., Brenner, B.M. 1979. Macromolecule transport across glomerular capillaries: Application of pore theory.Kidney Int. 16:353–365
    PubMed Google Scholar
  20. Deen, W.M., Bridges, C.R. 1982. Addenda and correction. Molecular charge of horseradish peroxidase.Am. J. Physiol. 242:_F_750
    PubMed Google Scholar
  21. Deen, W.M., Robertson, C.R., Brenner, B.M. 1972. A model of glomerular ultrafiltration in the rat.Am. J. Physiol. 223:1178–1183
    PubMed Google Scholar
  22. Deen, W.M., Satvat, B., Jamieson, J.M. 1980. Theoretical model for glomerular filtration of charged solutes.Am. J. Physiol. 238:_F_126-_F_139
    PubMed Google Scholar
  23. Deen, W.M., Satvat, B. 1981. Determinants of the glomerular filtration of proteins.Am. J. Physiol. 241:_F_162-_F_170
    Google Scholar
  24. Dubois, R., Decoodt, P., Gassèe, J.P., Verniory, A., Lambert, P.P. 1975. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data: I. A mathematical model.Pfluegers Arch. 356:299–316
    Google Scholar
  25. Eisenbach, G.M., Van Liew, J.B., Boylan, J.W. 1975. Effect of angiotensin on the filtration of protein in the rat kidney: A micropuncture study.Kidney Int. 8:80–87
    PubMed Google Scholar
  26. Galaske, R.G., Baldamus, C.A., Stolte, H. 1978. Plasma protein handling in the rat kidney: Micropuncture experiments in the acute heterologous phase of anti-GBM nephritis.Pfluegers Arch. 375:269–277
    Google Scholar
  27. Gassèe, J.P. 1973. Effect of acetylcholine on glomerular sieving of macromolecules.Pfluegers Arch. 342:239–254
    Google Scholar
  28. Gassèe, J.P., Dubois, R., Staroukine, M., Lambert, P.P. 1976. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data: III. The effects of angiotensin II.Pfluegers Arch. 367:15–24
    Google Scholar
  29. Hardwicke, J., Cameron, J.S., Harrison, J.F., Hulme, B., Soothill, J.F. 1970.In: Proteins in Normal and Pathological Urine. Y. Manuel, J.P. Revillard, and H. Betuel, editors. pp. 111–152. University Press, Baltimore
    Google Scholar
  30. Huss, R.E., Marsh, D.J., Kalaba, R.E. 1975. Two models of glomerular filtration rate and renal blood flow in the rat.Ann. Biomed. Eng. 3:72–99
    PubMed Google Scholar
  31. Lambert, P.P., Aeikens, B., Bohle, A., Hanus, F., Pegoff, S., Van Damme, M. 1982. A network model of glomerular function.Microvasc. Res. 23:99–128
    PubMed Google Scholar
  32. Lambert, P.P., Dubois, R., Decoodt, P., Gassèe, J.P., Verniory, A. 1975. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data: II. A physiological study in the normal dog.Pfluegers Arch. 359:1–22
    Google Scholar
  33. Leber, P.D., Marsh, D.J. 1970. Micropuncture study of concentration and fate of albumin in rat nephron.Am. J. Physiol. 219:353–363
    Google Scholar
  34. Lui, S., Kalant, N. 1974. Carbohydrate of the glomerular basement membrane in normal and nephrotic rats.Exp. Molec. Pathol. 21:52–62
    Google Scholar
  35. Michael, A.F., Blau, E., Vernier, R.L. 1970. Glomerular polyanion: Alteration in aminonucleoside nephrosis.Lab. Invest. 23:649–657
    PubMed Google Scholar
  36. Oken, D.E., Cotes, S.C., Mende, C.W. 1972. Micropuncture study of tubular transport of albumin in rats with aminonucleoside nephrosis.Kidney Int. 1:3–11
    PubMed Google Scholar
  37. Olsen, J.L., Rennke, H.G., Venkatachalam, M.A. 1981. Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats.Lab. Invest. 44:271–279
    PubMed Google Scholar
  38. Pappenheimer, J.R. 1953. Passage of molecules through capillary walls.Physiol. Rev. 33:387–423
    PubMed Google Scholar
  39. Pappenheimer, J.R., Renkin, E.M., Borrero, L.M. 1951. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability.Am. J. Physiol. 167:13–46
    PubMed Google Scholar
  40. Renkin, E.M., Gilmore, J.P. 1973.In: Handbook of Physiology, Section 8: Renal Physiology. J. Orloff and R.W. Berliner, editors. pp. 185–248. American Physiological Society, Washington
    Google Scholar
  41. Rennke, H.G., Cotran, R.S., Venkatachalam, M.A. 1975. Role of molecular charge in glomerular permeability: Tracer studies with cationized ferritins.J. Cell Biol. 67:638–646
    PubMed Google Scholar
  42. Rennke, H.G., Patel, Y., Venkatachalam, M.A. 1978. Glomerular filtration of proteins: Clearance of anionic, neutral, and cationic horseradish peroxidase in the rat.Kidney Int. 13:278–288
    PubMed Google Scholar
  43. Rennke, H.G., Venkatachalam, M.A. 1977. Glomerular permeability:In vivo tracer studies with polyanionic and polycationic ferritins.Kidney Int. 11:44–53
    PubMed Google Scholar
  44. Rennke, H.G., Venkatachalam, M.A. 1979. Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat.J. Clin. Invest. 63:713–717
    PubMed Google Scholar
  45. Robson, A.M., Giangiacomo, J., Keinstra, R.A., Naqvi, S.T., Ingelfinger, J.R. 1974. Normal glomerular permeability and its modification by minimal change nephrotic syndrome.J. Clin. Invest. 54:1190–1199
    PubMed Google Scholar
  46. Smith, F.G., III, Deen, W.M. 1980. Electrostatic doublelayer interactions for spherical colloids in cylindrical pores.J. Colloid Interface Sci. 78:444–465
    Google Scholar
  47. Verniory, A., Dubois, R., Decoodt, P., Gassèe, J.P., Lambert, P.P. 1973. Measurement of the permeability of biological membranes: Application to the glomerular wall.J. Gen. Physiol. 62:489–507
    PubMed Google Scholar
  48. Winetz, J.A., Robertson, C.R., Golbetz, H.V., Carrie, B.J., Salyer, W.R., Myers, B.D. 1981. The nature of the glomerular injury in minimal change and focal sclerosing glomerulopathies.Am. J. Kidney Dis. 1:91–98
    PubMed Google Scholar

Download references