- Holstein M., Sidranski D., Vogelstein B. and Harris C. C. (1991) p53 mutations in human cancers. Science253: 49–53
PubMed Google Scholar
- Soussi T., Caron de Fromentel C. and May P. (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene5: 945–952
PubMed Google Scholar
- Donehower L. A., Harvey M., Slagle B. L., McArthur M. J., Montgomery, Butel J. S. and Bradley A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356: 215–221
Article PubMed Google Scholar
- Jacks T., Remington L., Williams B. O., Schmitt E. M., Halachmi S., Bronson R. T. and Weinberg R. A. Tumor spectrum analysis in p53-mutant mice. Curr. Biol.4: 1–7
- Williams B. O., Remington L., Albert D. M., Mukai S., Bronson R. T. and Jacks T. (1994) Cooperative tumorigenic effects of germline mutations in Rb and p53. Nature Genet.7: 480–484
Article PubMed Google Scholar
- Harvey M., Vogel H., Moris D., Bradeley A., Bernstein A. and Donehower L. A. (1995) A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nature Genet.9: 305–311
Article PubMed Google Scholar
- Donehower L. A. and Bradley A. (1993) The tumor suppressor p53. Biochim. Biophys. Acta1155: 181–205
PubMed Google Scholar
- Farmer G., Bargonetti J., Zhu H., Friedman P., Prywes R. and Prives C. (1992) Wild-type p53 activates transcription in vitro. Nature358: 83–86
Article PubMed Google Scholar
- El-Deiry W. S., Kern S. E., Pietenpol J. A., Kinzler K. W. and Vogelstein B. (1992) Definition of a consensus binding site for p53. Nature Genetics1: 45–49
Article PubMed Google Scholar
- Kern S. E., Kinzler K. W., Bruskin A., Jarosz D., Friedman P., Prives C. and Vogelstein B. (1991) Identification of p53 as a sequence-specific DNA binding protein. Science252: 1708–1711
PubMed Google Scholar
- Funk W. D., Pak D. T., Karas R. H., Wright W. E. and Shay J. W. (1992) A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol.12: 2866–2871
PubMed Google Scholar
- Pavletich N. P., Chambers K. A. and Pabo C. O. (1993) The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev.7: 2556–2564
PubMed Google Scholar
- Bargonetti J., Manfredi J. J., Chen X., Marshak D. R. and Prives C. A. (1993) Proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev.7: 2565–2574
PubMed Google Scholar
- Wang Y., Reed M., Wang P., Stenger J. E., Mayr G., Anderson M. E., Schweded J. F. and Tegtmeyer P. (1993) p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev.7: 2575–2586
PubMed Google Scholar
- Cho Y., Gorina S., Jeffrey P. D. and Pavletich N. P. (1994) Crystal structure of a p53 tumour suppressor-DNA complex: understanding tumourigenic mutations. Science265: 346–355
PubMed Google Scholar
- Raycroft L., Wu H. and Lozano G. (1990) Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science249: 1049–1051
PubMed Google Scholar
- Unger T., Nau M. M., Segal S. and Minna J. D. (1992) p53: a trans-dominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J.11: 1383–1390
PubMed Google Scholar
- Stürzbecher H.-W., Brain R., Addison C., Rudge K., Remm M., Grimaldi M., Keenan E. and Jenkins J. R. (1992) A C-terminal α-helix plus basic region is the major structural determinant of p53 tetramerization. Oncogene71: 513–1523
Google Scholar
- Shaulian E., Zauberman A., Milner J., Davies E. A. and Oren M. (1993) Tight DNA binding and oligomerization are dispensable for the ability of p53 to transactivate target genes and suppress transformation. EMBO J.12: 2789–2797
PubMed Google Scholar
- Tarunina M. and Jenkins J. R. (1993) Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity. Oncogene8: 3165–3173
PubMed Google Scholar
- Wu L., Bayle J. H., Elenbaas B., Pavletich N. P. and Levine A. J. (1995) Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids. Mol. Cell. Biol.15: 497–504.
PubMed Google Scholar
- Lee S., Elenbaas B., Levine A. and Griffith J. (1995) p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell81: 1013–1020
Article PubMed Google Scholar
- Hupp T. R., Meek D. W., Midgley C. A. and Lane D. P. (1993) Activation of the cryptic DNA binding function of mutant forms of p53. Nucl. Acids Res.21: 3167–3174
PubMed Google Scholar
- Kulesz-Martin M. F., Lisafeld B., Huang H., Kisiel N. D. and Lee L. (1994) Endogenous p53 protein generated from wild-type alternatively spliced p53 RNA in mouse epidermal cells. Mol. Cell. Biol.14: 1698–708
PubMed Google Scholar
- Pietenpol J. A. and Vogelstein B. (1993) No room at the p53 inn. Nature365: 17–18
Article PubMed Google Scholar
- Ginsberg D., Mechta F., Yaniv M. and Oren M. (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl Acad. Sci. USA88: 9979–9983
PubMed Google Scholar
- Subler M. A., Martin D. W. and Deb S. (1992) Inhibition of viral and cellular promoters by human wild-type p53. J. Virol.66: 4757–4762
PubMed Google Scholar
- Mack D. H., Vartikar J., Pipas J. M. and Laimins L. A. (1993) Specific repression of TATA-mediated but not initiator-mediated transcription by wild type p53. Nature363: 281–283
Article PubMed Google Scholar
- Liu X., Miller C. W., Koeffler P. H. and Berk A. J. (1993) The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol. Cell. Biol.13: 3291–3300
PubMed Google Scholar
- Ragimov N., Krauskopf A., Navot N., Rotter V., Oren M. and Aloni Y. (1993) Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene8: 1183–1193
PubMed Google Scholar
- Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B. and Craig R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res.51: 6304–6311
PubMed Google Scholar
- Kuerbitz S. J., Plunkett B. S., Walsh W. V. and Kastan M. B. (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl Acad. Sci. USA89: 7491–7495
PubMed Google Scholar
- Yin Y., Tainsky M. A., Bischoff F. Z., Strong L. C. and Wahl G. M. (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell70: 937–948
Article PubMed Google Scholar
- Lu X. and Lane D. P. (1993) Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell75: 765–778
Article PubMed Google Scholar
- Zhan Q., Carrier F. and Forance A. J. (1993) Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell. Biol.13: 4242–4250
PubMed Google Scholar
- Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B. and Fornace A. J. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell71: 587–597
Article PubMed Google Scholar
- Maltzman W. and Czyzyk L. (1984) UV irradiation stimulates levels of p53 cellular tumour antigen in nontransformed mouse cells. Mol. Cell. Biol.4: 1689–1694
PubMed Google Scholar
- Sun X., Shimizu H. and Yamamoto K. (1995) Identification of a novel p53 promoter element involved in genotoxic stressinducible p53 gene expression. Mol. Cell. Biol.15: 4489–4496
PubMed Google Scholar
- Aloni-Grinstein R., Schwartz D. and Rotter V. (1995) Accumulation of wild-type p53 protein upon γ-irradiation induces a G2 arrest-dependent immunoglobulin_K_ light chain gene expression. EMBO J.14: 1393–1401
Google Scholar
- Atadja P., Wong I., Garkavtsev H., Veillette C. and Riabowol K. (1995) Increased activity of p53 in senescing fibroblasts. Proc. Natl Acad. Sci. USA92: 8348–8352
PubMed Google Scholar
- Dameron K. M., Volpert O. V., Tainsky M. A. and Bouck N. (1994) Control of angiogenesis in fibroblasts by p53 reglation of thrombospondin-1. Science265: 1582–1584
PubMed Google Scholar
- Diller L., Kassel J., Nelson C. E., Gryka M. A., Litwak G., Gebhardt M., Bressac B., Ozturk M., Baker S. J., Vogelstein B. and Friend S. H. (1990) p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol.10: 5772–5781
PubMed Google Scholar
- Mercer W. E., Shields M. T., Amin M., Sauve M. G. J., Apella E., Romano J. W. and Ullrich S. J. (1990) Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl Acad. Sci. USA87: 6166–6170
PubMed Google Scholar
- Michalovitz D., Halevy O. and Oren M. (1990) Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell62: 671–680
Article PubMed Google Scholar
- Martinez J., Georgoff I., Martinez J. and Levine A. J. (1991) Cellular localization and cell cycle regulation by a temperature sensitive p53 protein. Genes Dev.5: 151–159
PubMed Google Scholar
- Yonish-Rouach E., Resnitzky D., Lotem J., Sachs L., Kimchi A. and Oren M. (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature352: 345–347
Article PubMed Google Scholar
- Shaw P., Bovey R., Tardy S., Sahli R., Sordat B. and Costa J. (1992) Induction of apoptosis by wild-type p53 in human colon tumor-derived cell line. Proc. Natl Acad. Sci. USA89: 4495–4499
PubMed Google Scholar
- Ryan J. J., Danish R., Gottlieb C. A. and Clarke M. F. (1993) Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol. Cell. Biol.13: 711–719
PubMed Google Scholar
- Lowe S. W., Schmitt E. M., Smith S. W., Osborne B. A. and Jacks T. (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature362: 847–849
Article PubMed Google Scholar
- Clarke A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L. and Wyllie A. H. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature362: 849–852
Article PubMed Google Scholar
- Lotem J. and Sachs L. (1993) Hematomoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood83: 1092–1096
Google Scholar
- Yonish-Rouach E., Grunwald D., Wilder S., Kimchi A., May E., Lawrence J.-J., May P. and Oren M. (1993) p53-mediated cell death: relationship to cell cycle control. Mol. Cell. Biol.13: 1415–1423
PubMed Google Scholar
- Johnson P., Chung S. and Benchimol S. (1993) Growth suppression of Friend virus-transformed erythroleukemia cells by p53 protein is accompanied by hemoglobin production and is sensitive to erythropoietin. Mol. Cell. Biol.13: 1456–1463
PubMed Google Scholar
- Lin Y. and Benchimol S. (1995) Cytokines inhibit p53-mediated apoptosis but not p53-mediated G1 arrest. Mol. Cell. Biol. 15: 6045–6054
PubMed Google Scholar
- Abrahamson J. L., Lee J. M. and Bernstein A. (1995) Regulation of p53-mediated apoptosis and cell cycle arrest by Steel factor. Mol. Cell. Biol.15: 6953–6960
PubMed Google Scholar
- Wang Y. S., Okan I., Szekely L., Klein G. and Wiman. K. G. (1995) bcl-2 inhibits wild-type p53-triggered apoptosis but not G1 cell cycle arrest and transactivation of WAF1 and_bax_. Cell Growth Diff.6: 1071–1075
PubMed Google Scholar
- Debbas M. and White E. (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev.7: 546–554
PubMed Google Scholar
- Lowe S. W. and Ruley H. E. (1993) Stabilization of the p53 tumour suppressor is induced by the adenovirus 5 E1A and accompanies apoptosis. Genes Dev.7: 535–545
PubMed Google Scholar
- Chiou S.-K., Rao L. and White E. (1994) Bcl-2 blocks p53-dependent apoptosis. Mol. Cell. Biol.14: 2556–2563
PubMed Google Scholar
- Clarke A. R., Gledhill S., Hooper M. L., Bird C. C. and Wyllie A. H. (1994) p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene9: 1767–73
PubMed Google Scholar
- Collins M. K. L., Marvel J., Malde P. and Lopez-Rivas A. (1992) Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J. Exp. Med.171: 1043–1051
Article Google Scholar
- Canman C. E., Gilmer T. M., Coutts S. B. and Kastan M. B. (1995) Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev.9: 600–611
PubMed Google Scholar
- Levy N., Yonish-Rouach E., Oren M. and Kimchi A. (1993) Complementation by wild-type p53 of interleukin-6 effects on M1 cells: induction of cell cycle exit and cooperativity with c-myc suppression. Mol. Cell. Biol.13: 7942–7952
PubMed Google Scholar
- Guillouf C., Grana X., Selvakumaran M., De Luca X. A., Giordano A., Hoffman B. and Liebermann D. A. (1995) Dissection of the genetic programs of p53-mediated G1 growth arrest and apoptosis: blocking p53-induced apoptosis unmasks G1 arrest. Blood85: 2691–2698
PubMed Google Scholar
- Allday M. J., Inman G. J., Crawford D. H. and Farrell P. J. (1995) DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J.14: 4994–5005
PubMed Google Scholar
- Yonish-Rouach E., Bordé J., Gotteland M., Mishal Z., Viron A. and May E. (1994) Induction of apoptosis by transiently transfected metabolically stable wt p53 in transformed cell lines. Cell Death Diff.1: 39–47
Google Scholar
- Yonish-Rouach E., Deguin V., Zaitchouk T., Breugnot C., Mishal Z., Jenkins J. R. and May E. (1995) Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53. Oncogene11: 2197–2205
PubMed Google Scholar
- Haupt Y., Rowan S. and Oren M. (1995) p53-mediated apoptosis in HeLa cells can be overcome by excess pRb. Oncogene10: 1563–1571
PubMed Google Scholar
- Wu X. and Levine A. J. (1994) p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA91: 3602–3606
PubMed Google Scholar
- Pietenpol J. A., Tokino T., Thiagalingam S., El-Deiry W. S., Kinzler K. W. and Vogelstein B. (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl Acad. Sci. USA91: 1998–2002
PubMed Google Scholar
- Crook T., Marston N. J., Sara E. A. and Vousden K. H. (1994) Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell79: 817–827
Article PubMed Google Scholar
- El-Deiry W. S., Tokino T., Velculenscu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer E. W., Kinzler K. W. and Vogelstein B. (1993) WAF1, a potential mediator of p53 tumour suppression. Cell71: 817–825
Article Google Scholar
- Harper J. W., Adami G. R., Wei N., Keyomarsi K. and Elledge S. J. (1993) The p21 Cdk-interacting protein Cip 1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell75: 805–816
PubMed Google Scholar
- Xiong Y., Hannon G. J., Zhang H., Casso D., Kobayashi R. and Beach D. (1993) p21 is a universal inhibitor of cyclin kinases. Nature366: 701–704
Article PubMed Google Scholar
- Waga S., Hannon G. J., Beach D. and Stillman B. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature369: 574–578
Article PubMed Google Scholar
- Namba H., Hara T., Tukazaki T., Migita K., Ishikawa N., Ito K., Nagataki S. and Yamashita S. (1995) Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cipl pathway in human thyroid cells. Cancer Res.55: 2075–2080
PubMed Google Scholar
- Bae I. S., Fan K., Bhatia K., Kohn W., Fornace A. J. and O'Connor P. M. (1995) Relationships between G1 arrest and stability of the p53 and p21Cipl/Wafl proteins following gamma-irradiation of human lymphoma cells. Cancer Res.5585: 2387–2393
Google Scholar
- Deng C., Zhang P., Harrper J. W., Elledge S. J. and Leder P. (1995) Mice lacking p21PCII/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell82: 675–684
Article PubMed Google Scholar
- Brugarolas J., Chandrasekaran C., Gordon J. I., Beach D., Jacks T. and Hannon J. G. (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature377: 552–557
Article PubMed Google Scholar
- Hirano Y., Yamato K. and Tsuchida N. (1995) A temperature sensitive mutant of the human p53, Vall38, arrests rat cell growth without induced expression of cip1/waf1/sdi1 after temperature shift-down. Oncogene10: 1879–1885
PubMed Google Scholar
- Fornace A. J., Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J. and Holbrook N. J. (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol.9: 4196–4203
PubMed Google Scholar
- Zhan Q., Lord K. A., Alamo I., Hollander M. C., Carrier F., Ron D., Hohn K., Hoffman B., Liebermann D. A. and Forance A. J. (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol.14: 2361–2371
PubMed Google Scholar
- Smith M. L., Chen I.-T., Zhan Q., Bae I., Chen C.-Y., Glimer T. M., Kastan M. B., O'Conner P. M. and Forance A. J. (1995) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science266: 1376–1380
Google Scholar
- Kearsey J. M., Coates P. J., Prescott A. R., Warbrick E. and Hall P. A. (1995) Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene11: 1675–1683
PubMed Google Scholar
- Chen I. T., Smith M. L., O'Connor P. M. and Formace A. J. (1995) Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Wafl/Cip1 with PCNA. Oncogene11: 1931–1937
PubMed Google Scholar
- Okamoto K. and Beach D. (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J.13: 4816–4822
PubMed Google Scholar
- Zauberman A., Lupo A. and Oren M. (1995) Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites. Oncogene10: 2361–2366
PubMed Google Scholar
- Barak Y., Juven T., Haffner R. and Oren M. (1993) mdm-2 expression is induced by wild-type p53 activity. EMBO J.12: 461–468
PubMed Google Scholar
- Chen C. Y., Oliner J. D., Zhan Q., Forance A. J., Vogelstein B. and Kastan M. B. (1994) Interactions between p53 and MDM2 in a mammalian cel cycle checkpoint pathway. Proc. Natl Acad. Sci. USA91: 2684–2688
PubMed Google Scholar
- Caelles C., Helmberg A. and Karin M. (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature370: 220–223
Article PubMed Google Scholar
- Wagner A. J., Kokontis J. M. and Hay N. (1994) Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21wafl/cip1. Genes Dev.8: 2817–2830
PubMed Google Scholar
- Haupt Y., Rowan, S., Shaulian E., Vousden K. H. and Oren M. (1995) Induction of apoptosis in HeLa cells by trans-activation deficient p53. Genes Dev.9: 2170–2183
PubMed Google Scholar
- Sabbatini P., Lin J., Levine A. J. and White E. (1995) Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev.9: 2184–2192.
PubMed Google Scholar
- Oltvai Z., Milliman C. and Korsmeyer S. J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell74: 609–619
Article PubMed Google Scholar
- Selvakumaran M., Lin H. K., Miyashita T., Wang H. G., Krajewski S., Reed J. C., Hoffman B. and Liebermann D. (1994) Immediate early up-regulation of bax expression by p53 but not TGF-beta 1: a paradigm for distinct apoptotic pathways. Oncogene9: 1791–1798
PubMed Google Scholar
- Zhan Q., Fan S., Bae, I. Guillouf C., Liebermann D. A., O'Connor P. M. and Forance A. J. Jr. (1994) Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene9: 3743–3751
PubMed Google Scholar
- Miyashita T. and Reed J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell80: 293–299
Article PubMed Google Scholar
- Rowan S., Ludwig R. L., Haupt Y., Bates S., Lu X., Oren M. and Vousden K. H. (1996) Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J.15: 827–838
PubMed Google Scholar
- Knudson C., Tunk K., Tourtellotte W., Brown G. and Korsmeyer S. (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science270: 96–99
PubMed Google Scholar
- Miyashita T., Krajewski S., Krajewska M., Wang H. G., Lin H. K., Hoffman B., Lieberman D. and Reed J. C. (1994) tumour suppressor p53 is a regulator of_bcl_-2 and_ba_x gene expression in vitro and in vivo. Oncogene9: 1799–1805
PubMed Google Scholar
- Hadlar S., Negrini M., Monne M., Sabbioni S. and Croce C. M. (1994) Down regulation of bcl-2 by p53 in breast cancer cells. Cancer Res.54: 2095–2097
PubMed Google Scholar
- Nagata S. and Golstein P. (1995) The Fas death factor. Science267: 1449–1456
PubMed Google Scholar
- Owen-Schaub L. B., Zhang W., Cusack J. C., Angelo L. S., Santee S. M., Fujiwara T., Roth J. A., Deiseroth A. B., Zhang W.-W., Kruzel E. and Radinsky R. (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol.15: 3032–3040
PubMed Google Scholar
- Morimoto H., Yonehara S. and Bonavida B. (1993) Overcoming tumor necrosis factor and drug resistance of human tumor cell lines by combination treatment with anti-Fas antibody and drugs and toxins. Cancer Res.53: 2591–2596
PubMed Google Scholar
- Di Leonardo A., Linke S. P., Clarkin K. and Wahl G. M. (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev.8: 2540–2551
PubMed Google Scholar
- Lowe S. W., Ruley H. E., Jacks T. and Huosman D. E. (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell74: 957–967
Article PubMed Google Scholar
- Demers G. W., Foster S. A., Halbert C. L. and Galloway D. A. (1994) Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc. Natl Acad. Sci. USA91: 4382–4386
PubMed Google Scholar
- Slebos R. J., Lee M. H., Plunkett B. S., Kessis T. D., Williams B. O., Jacks T., Hedrick L., Kastan M. B. and Cho K. R. (1994) p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl Acad. Sci. USA91: 5320–5324
PubMed Google Scholar
- Hickman E. S., Picksley S. M. and Vousden K. H. (1994) Cells expressing HPV16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene9: 2177–2181
PubMed Google Scholar
- White A. E., Livanos E. M. and Tlsty T. D. (1994) Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev.8: 666–677
PubMed Google Scholar
- Qin X. Q., Livingston D. M., Kaelin W. G. and Adams P. D. (1994) Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA91: 10918–10922
PubMed Google Scholar
- Almasan A., Yin Y., Kelly R. E., Lee E. Y., Bradley A., Li W., Bertino J. R. and Wahl G. M. (1995) Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes and apoptosis. Proc. Natl Acad. Sci. USA92: 5436–5440
PubMed Google Scholar
- Shan B. and Lee W. H. (1994) Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol.14: 8166–8173
PubMed Google Scholar
- Logan T. J., Evans D. L., Mercer W. E., Bjornsti M. A. and Hall D. J. (1995) Expression of a deletion mutant of the E2F1 transcription factor in fibroblasts lengthens S phase and increases sensitivity to S phase-specific toxins. Cancer Res.55: 2883–2891
PubMed Google Scholar
- Howes K. A., Ransom L. N., Papermaster D. S., Lasudry J. G. H., Albert D. M. and Windle J. J. (1994) Analysis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev.8: 1300–1310
PubMed Google Scholar
- Pan H. and Griep A. E. (1994) Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumour suppressor gene function in development. Genes Dev.8: 1285–1299
PubMed Google Scholar