Proteases and protein degradation in Escherichia coli (original) (raw)

References

  1. Amerik, A. Y., Antonov, V. K., Gorbalenya, A. E., Kotova, S. A., Rotanova, T. V., and Shimbarevich, E. V., Site-directed mutagenesis of La protease. FEBS Lett.287 (1991) 211–214.
    Article CAS Google Scholar
  2. Bachmair, A., Finley, D., and Varshavsky, A., In vivo half-life of a protein is a function of its amino-terminal residue. Science_234_ (1986) 179–186.
    Article CAS PubMed Google Scholar
  3. Bachmair, A., and Varshavsky, A., The degradation signal in a short-lived protein. Cell_56_ (1989) 1019–1032.
    Article CAS PubMed Google Scholar
  4. Bahl, H., Echols, H., Straus, D. B., Court, D., Crowl, R., and Georgopoulos, C. P., Induction of the heat shock response of_E. coli_ through stabilization of sigma 32 by the phage lambda cIII protein. Genes Development_1_ (1987) 57–64.
    Article CAS PubMed Google Scholar
  5. Baker, T. A., Grossman, A. D., and Gross, C. A., A gene regulating the heat shock response in_Escherichia coli_ also affects proteolysis. Proc. natl Acad. Sci. USA_81_ (1984) 6779–6783.
    Article CAS PubMed PubMed Central Google Scholar
  6. Baneyx, F., and Georgiou, G., In vivo degradation of secreted fusion proteins by the_Escherichia coli_ outer membrane protease OmpT. J. Bact.172 (1990) 491–494.
    Article CAS PubMed PubMed Central Google Scholar
  7. Banuett, F., Hoyt, M. A., McFarlane, L., Echols, H., and Herskowitz, I.,hflB, a new_Escherichia coli_ locus regulating lysogeny and the level of bacteriophage lambda cII protein. J. molec. Biol.187 (1986) 213–224.
    Article CAS PubMed Google Scholar
  8. Ben-Bassat, A., Bauer, K., Chang, S. Y., Myambo, K., Bossman, A., and Chang, S., Processing of the initiation methionine from proteins: properties of the_Escherichia coli_ methionine peptidase and its structure. J. Bact.169 (1987) 751–757.
    Article CAS PubMed PubMed Central Google Scholar
  9. Bond, J. S., and Butler, P. E., Intracellular proteases. A. Rev. Biochem.56 (1987) 333–364.
    Article CAS Google Scholar
  10. Bonnefoy, E., Almeida, A., and Rouviere-Yaniv, J., Lon-dependent regulation of the DNA-binding protein HU in_Escherichia coli_. Proc. natl Acad. Sci. USA_86_ (1990) 7691–7695.
    Article Google Scholar
  11. Bowie, J. U., and Sauer, R. T., Identification of C-terminal extensions that protect proteins from intracellular proteolysis. J. biol. Chem.264 (1989) 7596–7602.
    Article CAS PubMed Google Scholar
  12. Bukhari, A. I., and Zipser, D., Mutants of_Escherichia coli_ with a defect in the degradation of nonsense fragments. Nature_243_ (1973) 238–241.
    CAS Google Scholar
  13. Burckhardt, S. E., Woodgate, R., Scheuermann, R. H., and Echols, H., UmuD mutagenesis protein of_Escherichia coli_: Overproduction, purification, and cleavage by RecA. Proc. natl Acad. Sci. USA_85_ (1988) 1811–1815.
    Article CAS PubMed PubMed Central Google Scholar
  14. Canceill, D., Dervyn, E., and Huisman, O., Proteolysis and modulation of the activity of the cell division inhibitor SulA in_Escherichia coli Ion_ mutants. J. Bact.172 (1990) 7297–7300.
    Article CAS PubMed PubMed Central Google Scholar
  15. Caron, P. R., and Grossman, L., Potential role of proteolysis in the control of UvrABC incision. Nucl. Acids Res.16 (1988) 10903–10912.
    Article CAS PubMed PubMed Central Google Scholar
  16. Cavard, D., and Lazdunski, C., Colicin cleavage by OmpT protease during both entry into and release from_Escherichia coli_ cells. J. Bact.172 (1990) 648–652.
    Article CAS PubMed PubMed Central Google Scholar
  17. Cavard, D., Lazdunski, C., and Howard, S. P., The acylated precursor form of the Colicin A lysis protein is a natural substrate of the DegP protease. J. Bact.171 (1989) 6316–6322.
    Article CAS PubMed PubMed Central Google Scholar
  18. Charette, M., Henderson, G. W., and Markovitz, A., ATP hydrolysis-dependent activity of the_lon(capR)_ protein of_E. coli_ K12. Proc. natl Acad. Sci. USA_78_ (1981) 4728–4732.
    Article CAS PubMed PubMed Central Google Scholar
  19. Charette, M. F., Henderson, G. W., Doane, L. L., and Markovitz, A., DNA Stimulated ATPase Activity of the Lon (CapR) Protein. J. Bact.158 (1984) 195–201.
    Article CAS PubMed PubMed Central Google Scholar
  20. Cheng, H. H., Muhlrad, P. J., Hoyt, A., and Echols, H., Cleavage of the cII protein of phage lambda purified HflA protease: control of the switch between lysis and lysogeny. Proc. natl Acad. Sci. USA_85_ (1988) 7882–7886.
    Article CAS PubMed PubMed Central Google Scholar
  21. Cheng, Y. S., and Zipser, D., Purification and characterization of protease III from_Escherichia coli_. J. biol. Chem.254 (1979) 4698–4706.
    Article CAS PubMed Google Scholar
  22. Cheng, Y.-S. E., Zipser, D., Cheng, C.-Y., and Roiseth, S. J., Isolation and characterization of mutations in the structural gene for protease III (ptr). J. Bact.140 (1979) 125–130.
    Article CAS PubMed PubMed Central Google Scholar
  23. Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L., Sequence of the_Ion_ gene in_Escherichia coli_: A heat-shock gene which encodes the ATP-dependent protease La. J. biol. Chem.263 (1988) 11718–11728.
    Article CAS PubMed Google Scholar
  24. Chung, C. H., and Goldberg, A. L., DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from_Escherichia coli_. Proc. natl Acad. Sci. USA_79_ (1982) 795–799.
    Article CAS PubMed PubMed Central Google Scholar
  25. Chung, C. H., and Goldberg, A. L., The product of the_Ion(capR)_ gene in_Escherichia coli_ is the ATP-dependent protease, protease La. Proc. natl Acad. Sci. USA_78_ (1981) 4931–4935.
    Article CAS PubMed PubMed Central Google Scholar
  26. Chung, C. H., and Goldberg, A. L., Purification and characterization of protease So, a cytoplasmic serine protease in_Escherichia coli_. J. Bact.154 (1983) 231–238.
    Article CAS PubMed PubMed Central Google Scholar
  27. Chung, C. H., Ives, H. E., Almeda, S., and Goldberg, A. L., Purification from_Escherichia coli_ of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J. biol. Chem.258 (1983) 11032–11038.
    Article CAS PubMed Google Scholar
  28. Claverie-Martin, F., Diaz-Torres, M. R., Kushner, S. R., Analysis of the regulatory region of the protease III (ptr) gene of_Escherichia coli_ K12. Gene_54_ (1987) 185–195.
    Article CAS PubMed Google Scholar
  29. Craig, N. L., and Roberts, J. W., Function of nucleoside triphosphate and polynucleotide in_Escherichia coli recA_ protein directed cleavage of phage lambda repressor. J. biol. Chem.256 (1981) 8039–8044.
    Article CAS PubMed Google Scholar
  30. Davies, K. J. A., and Lin, S. W., Degradation of oxidatively denatured protein in_Escherichia coli_. Free Radic. Biol. Med.5 (1988) 215–223.
    Article CAS PubMed Google Scholar
  31. Dennis, P. P., Synthesis and stability of individual ribosomal proteins in the presence of rifampicin. Mol. gen. Genet.134 (1974) 39–47.
    Article CAS PubMed Google Scholar
  32. Derbyshire, C., Kramer, M., and Grindley, N. D. F., Role of instability in the cis action of the insertion sequence IS903 transposase. Proc. natl Acad. Sci. USA_87_ (1990) 4048–4052.
    Article CAS PubMed PubMed Central Google Scholar
  33. Dervyn, E., Canceill, D., and Huisman, O., Saturation and specificity of the Lon protease of_Escherichia coli_. J. Bact.172 (1990) 7098–7103.
    Article CAS PubMed PubMed Central Google Scholar
  34. Desautels, M., and Goldberg, A. L., Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. natl Acad. Sci. USA_79_ (1982) 1869–1873.
    Article CAS PubMed PubMed Central Google Scholar
  35. Donch, J., and Greenberg, J., Genetic analysis of_lon_ mutants of strain K-12 of_Escherichia coli_. Mol. gen. Genet.103 (1968) 105–115.
    Article CAS PubMed Google Scholar
  36. Downs, D., Waxman, L., Goldberg, A. L., and Roth, J., Isolation and characterization of_lon_ mutants in_Salmonella typhimurium_. J. Bact.167 (1986) 193–197.40.
    Article Google Scholar
  37. Dykstra, C. C., and Kushner, S. R., Physical Characterization of the cloned Protease III gene from_Escherichia coli_ K-12 J. Bact.163 (1985) 1055–1059.
    Article CAS PubMed PubMed Central Google Scholar
  38. Edmunds, T., and Goldberg, A. L., Role of ATP hydrolysis in the degradation of proteins by protease La from_Escherichia coli_. J. cell. Biochem.32 (1986) 187–191.
    Article CAS PubMed Google Scholar
  39. Eytan, E., Ganoth, D., Armon, T., and Hershko, A., ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. natl Acad. Sci. USA_86_ (1989) 7751–7755.
    Article CAS PubMed PubMed Central Google Scholar
  40. Falkenburg, P. E., Haass, C., Kloetzel, P. M., Niedel, B., Kopp, F., Kuehn, L., and Dahlmann, B., Drosophila small cytoplasmic 19S ribonucleoprotein is homologous to the rat multicatalytic proteinase. Nature_331_ (1988) 190–192.
    Article CAS PubMed Google Scholar
  41. Finley, D., Ciechanover, A., and Varshavsky, A., Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant_ts85_. Cell_37_ (1984) 43–55.
    Article CAS PubMed Google Scholar
  42. Finch, P. W., Wilson, R. R., Brown, K., Hickson, I. D., and Emmerson, P. T., Complete nucleotide sequence of the_Escherichia coli ptr_ gene encoding Protease III. Nucl. Acids Res.14 (1986) 7695–7703.
    Article CAS PubMed PubMed Central Google Scholar
  43. Fujiwara, T., Tanaka, K., Orino, E., Hoshimura, T., Kumatori, A., Tamura, T., Chung, C. H., Nakai, T., Yamaguchi, K., Shin, S., Kakizuka, A., Nakanishi, S., and Ichihara, A., Proteasomes are essential for yeast proliferation. J. biol. Chem.265 (1990) 16604–1663.
    Article CAS PubMed Google Scholar
  44. Ganoth, D., Leshinsky, E., Eytan, E., and Hershko, A., A multicomponent system that degrades proteins conjugated to ubiquitin. J. biol. Chem.263 (1988) 12412–12419.
    Article CAS PubMed Google Scholar
  45. Georgopoulos, C., Ang. D., Libeleric, K., and Zylicz, M., Properties of the_Escherichia coli_ heat shock proteins and their role in bacteriophage λ growth in: Stress Proteins in Biology and Medicine, pp. 191–221. Eds R. Morimoto, A. Tissieres and C. Georgopoulos. Cold Spring Harbor Press 1990.
  46. Goff, S. A., and Goldberg, A. L., An increased content of protease La, the_lon_ gene product, increases protein degradation and blocks growth in_Escherichia coli_. J. biol. Chem.262 (1987) 4508–4515.
    Article CAS PubMed Google Scholar
  47. Goff, S. A., Casson, L. P., and Goldberg, A. L., Heat shock regulatory gene_htpR_ influences rates of protein degradation and expression of the_lon_ gene in_Escherichia coli_. Proc. natl Acad. Sci. USA_81_ (1984) 6647–6651.
    Article CAS PubMed PubMed Central Google Scholar
  48. Goff, S. A., and Goldberg, A. L., Production of abnormal proteins in_E. coli_ stimulates transcription of_lon_ and other heat shock genes. Cell_41_ (1985) 587–595.
    Article CAS PubMed Google Scholar
  49. Goldberg, A. L., Degradation of abnormal proteins in_Escherichia coli_. Proc. natl Acad. Sci. USA_69_ (1972) 422–426.
    Article CAS PubMed PubMed Central Google Scholar
  50. Goldberg, A. L., and St. John, A. C., Intracellular protein degradation in mammalian and bacterial cells: part 2. A. Rev. Biochem.45 (1976) 747–803.
    Article CAS Google Scholar
  51. Goldberg, A. L., Streedhara Swamy, K. H., Chung, C. H., and Larimore, F. S., Proteases of_Escherichia coli_. Meth. Enzym.80 (1983) 680–702.
    Article Google Scholar
  52. Goldberg, A. L., and Waxman, L., The role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from_Escherichia coli_. J. biol. Chem.260 (1985) 12029–12034.
    Article CAS PubMed Google Scholar
  53. Goldschmidt, R., In vivo degradation of nonsense fragements in_E. coli_. Nature (London)228 (1970) 1151–1154.
    Article CAS PubMed Google Scholar
  54. Gottesman, S., Regulation by proteolysis, in:Escherichia coli and_Salmonella typhimurium_: Cellular and Molecular Biology, pp. 1308–1312. Eds F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaecter and H. E. Umbarger. American Society for Microbiology, Washington, D.C. 1987.
    Google Scholar
  55. Gottesman, S., Genetics of proteolysis in_Escherichia coli_. A. Rev. Genet.23 (1989) 163–198.
    Article CAS Google Scholar
  56. Gottesman, S., Clark, W. P., and Maurizi, M. R., The ATP-dependent Clp protease of_Escherichia coli_ sequence of_clpA_ and identification of a Clp-specific substrate. J. Biol. Chem.265 (1990) 7886–7893.
    Article CAS PubMed Google Scholar
  57. Gottesman, S., Gottesman, M., Shaw, J., and Pearson, M. L., Protein degradation in_E. coli_: the_lon_ mutation and bacteriophage lambda N and cII protein stability. Cell_24_ (1981) 225–233.
    Article CAS PubMed Google Scholar
  58. Gottesman, S., Squires, C., Pichersky, E., Carrington, M., Hobbs, M., Mattick, J. S., Dalrymple, B., Kuramitsu, H., Shiroza, T., Foster, T., Clark, W. P., Ross, B., Squires, C., and Maurizi, M. R., Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. natl Acad. Sci. USA_87_ (1990) 3513–3517.
    Article CAS PubMed PubMed Central Google Scholar
  59. Gottesman, S., and Zipser, D., The Deg phenotype of_Escherichia coli lon_ mutants. J. Bact.133 (1978) 844–851.
    Article CAS PubMed PubMed Central Google Scholar
  60. Grodberg, J., and Dunn, J. J.,ompT Encodes the_Escherichia coli_ outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bact.170 (1988) 1245–1253.
    Article CAS PubMed PubMed Central Google Scholar
  61. Grossman, A. D., Burgess, R., Walter, W., and Gross, C., Mutations in the_lon_ gene of_E. coli_ K12 phenotypically suppress a mutation in the sigma subunit of RNA polymerase. Cell_32_ (1983) 151–159
    Article CAS PubMed Google Scholar
  62. Grossman, A. D., Erickson, J. W., and Gross, C. A., The_htpR_ gene product of_E. coli_ is a sigma factor for heat shock promoters. Cell_38_ (1984) 383–390.
    Article CAS PubMed Google Scholar
  63. Grossman, A. D., Straus, D. B., Walter, W. A., and Gross, C. A., Sigma 32 synthesis can regulate the synthesis of heat shock proteins in_Escherichia coli_. Genes Dev.1 (1987) 179–184.
    Article CAS PubMed Google Scholar
  64. Heinemeyer, W., Kleinschmidt, J. A., Saidowsky, J., Escher, C., and Wolf, D. H., Proteinase YscE, the yeast proteasome/multicatalyticmultifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J.10 (1991) 555–562.
    Article CAS PubMed PubMed Central Google Scholar
  65. Hershko, A., Ubiquitin-mediated protein degradation. J. biol. Chem.263 (1990) 15237–15240
    Article Google Scholar
  66. Holck, A., and Kleppe, K., Cloning and sequence of the gene for the DNA-binding 17K protein of_Escherichia coli_. Gene_67_ (1988) 117–124.
    Article CAS PubMed Google Scholar
  67. Hopfield, J. J., Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. natl Acad. Sci. USA_71_ (1974) 4135–4139.
    Article CAS PubMed PubMed Central Google Scholar
  68. Hough, R., Pratt, G., and Rechensteiner, M., Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. biol. Chem.262 (1987) 8303–8313.
    Article CAS PubMed Google Scholar
  69. Hoyt, M. A., Knight, D. M., Das, A., Miller, H. I., and Echols, H., Control of phage lambda development by stability and synthesis of cII protein: Role of the viral cIII and host_hflA, himA_ and_himD_ genes. Cell_31_ (1982) 565–573.
    Article CAS PubMed Google Scholar
  70. Huisman, O., D'Ari, R., and Gottesman, S., Cell division control in_Escherichia coli_: specific induction of the SOS SfiA protein is sufficient to block septation. Proc. natl Acad. Sci. USA_81_ (1984) 4490–4494.
    Article CAS PubMed PubMed Central Google Scholar
  71. Hwang, B. J., Park, W. J., Chung, C. H., and Goldberg, A. L.,Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La. Proc. natl Acad. Sci. USA_84_ (1987) 5550–5554.
    Article CAS PubMed PubMed Central Google Scholar
  72. Hwang, B. J., Woo, K. M., Goldberg, A. L., and Chung, C. H., Protease Ti, a new ATP-dependent protease in_Escherichia coli_ contains protein-activated ATPase and proteolytic functions in distinct subunits. J. biol. Chem.263 (1988) 8727–8734.
    Article CAS PubMed Google Scholar
  73. Ichihara, S., Beppu, N., and Mizushima, S., Protease IV, a cytoplasmic membrane protein of_Escherichia coli_, has signal peptide peptidase activity. J. biol. Chem.259 (1984) 9853–9857.
    Article CAS PubMed Google Scholar
  74. Ichihara, S., Suzuki, T., Suzuki, M., and Mizushima, S., Molecular cloning and sequencing of the_sppA_ gene and characterization of the encoded protease IV, a signal peptide peptidase, of_Escherichia coli_. J. biol. Chem.261 (1986) 9405–9411.
    Article CAS PubMed Google Scholar
  75. Innis, M. A., Tokunaga, M., Williams, M. E., Loranger, J. M., Chang, S. Y., Chang, S., and Wu, H. C., Nucleotide sequence of the_Escherichia coli_ prolipoprotein signal peptidase (lsp) gene. Proc. natl Acad. Sci. USA_81_ (1984) 3708–3712.
    Article CAS PubMed PubMed Central Google Scholar
  76. Ishihama, A., Fujita, N., and Glass, R. E., Subunit assembly and metabolic stability of_E. coli_ RNA polymerase. Prot. Struct. Funct. Gen.2 (1987) 42–53.
    Article CAS Google Scholar
  77. Johnson, C., Chandrasekhar, G. N., and Georgopoulos, C.,Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro. J. Bact.171 (1989) 1590–1596.
    Article CAS PubMed PubMed Central Google Scholar
  78. Jones, C. A., and Holland, I. B., Role of the SfiB (FtsZ) protein in division inhibition during the SOS response in_E. coli_: FtsZ stabilizes the inhibitor SfiA in maxicells. Proc. natl Acad. Sci. USA_82_ (1985) 6045–6049.
    Article CAS PubMed PubMed Central Google Scholar
  79. Katayama, Y., Gottesman, S., Pumphrey, J., Rudikoff, S., Clark, W. P., and Maurizi, M. R., The two-component ATP-dependent Clp Protease of_Escherichia coli_: purification, cloning, and mutational analysis of the ATP-binding component. J. biol. Chem.263 (1988) 15226–15236.
    Article CAS PubMed Google Scholar
  80. Katayama-Fujimura, Y., Gottesman, S., and Maurizi, M. R., a multiple-component, ATP-dependent protease from_Escherichia coli_. J. biol. Chem.262 (1987) 4477–4485.
    Article CAS PubMed Google Scholar
  81. Keller, J. A., and Simon, L. D., Divergent effects of a_dnaK_ mutation on abnormal protein degradation in_Escherichia coli_. Molec. Microbiol.2 (1988) 31–41.
    Article CAS Google Scholar
  82. Kitagawa, M., Wada, C., Yoshioka, S., and Yura, T., Expression of ClpB, an analog of the ATP-dependent protease-regulatory subunit in_Escherichia coli_ is controlled by heat shock σ factor (σ32). J. Bact.173 (1991) 4247–4253.
    Article CAS PubMed PubMed Central Google Scholar
  83. Kornitzer, D., Altuvia, S., and Oppenheim, A. B., The activity of the CIII regulator of lamboid bacteriophages resides within a 24-amino acid protein domain. Proc. natl Acad. Sci. USA_88_ (1991).
  84. Kroh, H. E., and Simon, L. E., The ClpP component of Clp protease is the σ32-dependent heat shock protein F21.5. J. Bact.172 (1990) 6026–6034.
    Article CAS PubMed PubMed Central Google Scholar
  85. Kuhn, A., and Wickner, W., Conserved residues of the leader peptide are essential for cleavage by leader peptidase. J. biol. Chem.260 (1985) 55914–15918.
    Article Google Scholar
  86. Lazarides, E., and Moon, R. T., Assembly and topogenesis of the spectrin-based membrane skeleton in erythroid development. Cell_37_ (1984) 354–356.
    Article CAS PubMed Google Scholar
  87. Lee, C. S., Hahm, J. K., Hwang, B. J., Park, K. C., Ha, D. B., Park, S. D., and Chung, C. H., Processing of Ada protein by two serine endoproteases Do and So from_Escherichia coli_. FEBS Lett.262 (1990) 310–312.
    Article CAS PubMed Google Scholar
  88. Lee, Y. S., Park, S. C., Goldberg, A. L., and Chung, C. H., Protease So from_Escherichia coli_ preferentially degrades oxidatively damaged glutamine synthetase. J. biol. Chem.263 (1988) 6643–6646.
    Article CAS PubMed Google Scholar
  89. Lindahl, T., Sedgwick, B., Sekiguchi, M., and Nakabeppu, Y., Regulation and expression of the adaptive response to alkylating agents. A. Rev. Biochem.57 (1988) 133–157.
    Article CAS Google Scholar
  90. Lipinska, B., Fayet, O., Baird, L., and Georgopoulos, C. Identification, characterization, and mapping of the_Escherichia coli htrA_ gene, whose product is essential for bacterial growth only at elevated temperatures. J. Bact.171 (1989) 1574–1584.
    Article CAS PubMed PubMed Central Google Scholar
  91. Lipinska, B., Zylicz, M., and Georgopoulos, C., The HtrA (DegP) protein, essential for_Escherichia coli_ survival at high temperatures, is an endopeptidase. J. Bact.172 (1990) 1791–1797.
    Article CAS PubMed PubMed Central Google Scholar
  92. Little, J. W., Autodigestion of LexA and phage lambda repressors. Proc. natl Acad. Sci. USA_81_ (1984) 1375–1379.
    Article CAS PubMed PubMed Central Google Scholar
  93. Little, J. W., Edmiston, S. H., Pacelli, L. Z., and Mount, D. W., Cleavage of the_Escherichia coli lexA_ protein by the_recA_ protease. Proc. natl Acad Sci. USA_77_ (1980) 3225–3229.
    Article CAS PubMed PubMed Central Google Scholar
  94. Little, J. W., and Mount, D. W., The SOS regulatory system of_Escherichia coli_. Cell_29_ (1982) 11–22.
    Article CAS PubMed Google Scholar
  95. Mandelstam, J., Turnover of protein in growing and nongrowing population of_Escherichia coli_. Biochem. J.169 (1958) 110–119.
    Article Google Scholar
  96. Maurizi, M. R., Degradation in vitro of bacteriophage lambda N protein by Lon protease from_Escherichia coli_. J. biol. Chem.262 (1987) 2696–2703.
    Article CAS PubMed Google Scholar
  97. Maurizi, M. R., ATP-promoted interaction between ClpA and ClpP in activation of Clp protease from_Escherichia coli_. Biochem. Soc. Trans. (1991) in press.
  98. Maurizi, M. R., Katayama, Y., and Gottesman, S., Selective ATP-dependent degradation of proteins in_Escherichia coli_, in: The Ubiquitin System. Current Communications in Molecular Biology, pp. 147–154. Ed. M. J. Schlesinger. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1988.
    Google Scholar
  99. Maurizi, M. R., Clark, W. P., Katayama, Y., Rudikoff, S., Pumphrey, J., Bowers, B., and Gottesman, S., Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of_Escherichia coli_. J. biol. Chem.265 (1990) 12536–12545.
    Article CAS PubMed Google Scholar
  100. Maurizi, M. R., Clark, W. P., Kim, S. H., and Gottesman, S. J., ClpP represnts a unique family of serine proteases. Biol. Chem.265 (1990) 12546–12552.
    Article CAS Google Scholar
  101. Maurizi, M. R., and Switzer, R. L., Proteolysis in bacterial sporulation. Curr. Top. Cell Regul.16 (1979) 163–224.
    Article Google Scholar
  102. Maurizi, M. R., Trisler, P., and Gottesman, S., Insecrtional mutagenesis of the_lon_ gene in_Escherichia coli: lon_ is dispensable. J. Bact.164 (1985) 1124–1135.
    Article CAS PubMed PubMed Central Google Scholar
  103. mcGrath, M. E., Hines, W. M., Sakanari, J. A., Fletterick, R. J., and Craik, C. S., The sequence and reactive site of Ecotin. J. biol. Chem.266 (1991) 6620–6625.
    Article CAS PubMed Google Scholar
  104. Menon, A. S., and Goldberg, A. L., binding of nucleotides to the ATP-dependent protease La from_Escherichia coli_. J. biol. Chem.262 (1987) 14921–14928.
    Article CAS PubMed Google Scholar
  105. Menon, A. S., and Goldberg, A. L., Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J. biol. Chem.262 (1987) 14929–14934.
    Article CAS PubMed Google Scholar
  106. Menon, A. S., Waxman, L., and Goldberg, A. L., The energy utilized in protein breakdown by the ATP-dependent protease La from_Escherichia coli_. J. biol. Chem.262 (1987) 722–726.
    Article CAS PubMed Google Scholar
  107. Michaelis, S., and Beckwith, J., Mechanism of incorporation of cell envelop proteins in_Escherichia coli_. A. Rev. Microbiol.36 (1982) 435–465.
    Article CAS Google Scholar
  108. Miller, C. G., Protein degradation and proteolytic modification in:Escherichia coli and_Salmonella typhimurium_: Cellular and Molecular Biology, pp. 680–691. Eds F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. Umbarger. American Society for Microbiology, Washington, D.C. 1987.
    Google Scholar
  109. Miller, C. G., Genetics and physiological roles of_Salmonella typhimurium_ peptidases, in: Microbiology 1985, pp. 346–349. Ed. L. Leive. American Society for Microbiology, Washington, D.C. 1985.
    Google Scholar
  110. Miller, C. G., and Schwartz, G., Peptidase-deficient mutants of_Escherichia coli_. J. Bact.135 (1978) 603–611.
    Article CAS PubMed PubMed Central Google Scholar
  111. Mizusawa, S., and Gottesman, S., Protein degradation in_Escherichia coli_: The_lon_ gene controls the stability of the SulA protein. Proc. natl Acad. Sci. USA_80_ (1983) 358–362.
    Article CAS PubMed PubMed Central Google Scholar
  112. Mosteller, R. D., Goldstein, R. V., and Nishimoto, K. R., Metabolism of individual proteins in exponentially growing_Escherichia coli_. J. biol. Chem.255 (1980) 2524–2532.
    Article CAS PubMed Google Scholar
  113. Moesteller, R. D., Nishimoto, K. R., and Goldstein, R. V., Inactivation and partial degradation of phosphoribosylanthranilate isomerase-indoleglycerol phosphate synthetase in nongrowing cultures of_Escherichia coli_. J. Bact.131 (1977) 153–162.
    Article Google Scholar
  114. Murray, A. W., Solomon, M. J., and Kirschner, M. W., The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature_339_ (1989) 280–286.
    Article CAS PubMed Google Scholar
  115. Nash, H. A., Robertson, C. A., Flamm, E., Weisberg, R. A., and Miller, H. I., Overproduction of_Escherichia coli_: integration host factor, a protein with nonidentical subunits. J. Bact.169 (1987) 4124–4127.
    Article CAS PubMed PubMed Central Google Scholar
  116. Neidhardt, F. C., VanBogelen, R. A., and Vaughn, V., The genetics and regulation of the heat shock proteins. A. Rev. Genet.18 (1984) 295–329.
    Article CAS Google Scholar
  117. Neurath, H., Evolution of proteolytic enzymes. Science_224_ (1984) 350–357.
    Article CAS PubMed Google Scholar
  118. Nishi, K., and Schnier, J., The phenotypic suppression of a mutation in the gene_rplX_ for ribosomal protein L24 by mutations affecting the lon gene product for protease La in_Escherichia coli_ K12. Molec. gen. Genet.212 (1988) 177–181.
    Article CAS PubMed Google Scholar
  119. Nohmi, T., Battista, J. R., Dodson, L. A., and Walker, G. C., RecAmediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. natl Acad. sci. USA_85_ (1988) 1816–1820.
    Article CAS PubMed PubMed Central Google Scholar
  120. Novak, P., Ray, P. H., and Dev, I. K., Localization and purification of two enzymes from_Escherichia coli_ capable of hydrolyzing a signal peptide. J. biol. Chem.261 (1986) 420–427.
    Article CAS PubMed Google Scholar
  121. Olden, K., and Goldberg, A. L., Studies on the energy requirement for intracellular protein degradation in_Escherichia coli_. Biochim. biophys. Acta_542_ (1978) 385–598.
    Article CAS Google Scholar
  122. Oliver, D., Protein secretion in_Escherichia coli_. A. Rev. Microbiol.39, (1985) 615–648
    Article CAS Google Scholar
  123. Orlowski, M., The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry_29_ (1990) 10289–10297.
    Article CAS PubMed Google Scholar
  124. Pacaud, M., Sibilli L., and Le Bras, G., Protease I from_Escherichia coli_. Eur. J. Biochem.69 (1976) 141–151.
    Article CAS PubMed Google Scholar
  125. Pacaud, M., Protease II from_Escherichia coli_: substrate specificity and kinetic properties. Eur. J. Biochem.82 (1978) 439–451.
    Article CAS PubMed Google Scholar
  126. Pacaud, M., Purification and characterization of two novel proteolytic enzymes in membranes of_Escherichia coli_. J. biol. Chem.257 (1982) 4333–4339
    Article CAS PubMed Google Scholar
  127. Pakula, A. A., Young, V. B., and Sauer, R. T., Bacteriophage λ Cro mutations: effects on activity and intracellular degradation. Proc. natl Acad. Sci. USA_83_ (1986) 8829–8833.
    Article CAS PubMed PubMed Central Google Scholar
  128. Palmer, S. M., and St, John, A. C., Characterization of a membraneassociated serine protease in_Escherichia coli_. J. Bact.169 (1987) 1474–1479.
    Article CAS PubMed PubMed Central Google Scholar
  129. Park, J. H., Lee, Y. S., Chung, C. H., and goldberg, A. L., Purification and characterization of protease Re, a cytoplasmic endoprotease in_Escherichia coli_. J. Bact.170 (1988) 921–926.
    Article CAS PubMed PubMed Central Google Scholar
  130. Parsell, D. A., Sanchez, Y., Stitzel, J. D., and Lindquist, S., Hsp 104 is a highly conserved protein with two essential nucleotide-binding sites. Nature (London)353 (1991) 270–273.
    Article CAS PubMed Google Scholar
  131. Parsell, D. A., and Sauer, R. T., The structural stability of a protein is an important determinant of its proteolytic susceptibility in_E. coli_. J. biol. Chem.264 (1989) 7590–7595.
    Article CAS PubMed Google Scholar
  132. Parsell, D. A., Silber, K. R., and Sauer, R. t., Carboxy-terminal determinants of intracellular protein degradation. Genes Devl.4 (1990) 277–286.
    Article CAS Google Scholar
  133. Pato, M. L., and Reich, C., Instability of transposase activity: evidence from bacteriophage Mu DNA replication. Cell_29_ (1982) 219–225.
    Article CAS PubMed Google Scholar
  134. Pelham, H. R. B., Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell_46_ (1986) 959–961.
    Article CAS PubMed Google Scholar
  135. Perry, K. L., Elledge, S. J., Mitchell, B. B., Marsh, L., and Walker, G. C.,mucDC and_mucAB_ operons whose products are required for UV light-and chemical-induced mutagenesis: umuD, MucA, and LexA proteins share homology. Proc. natl Acad. Sci. USA_82_ (1985) 4331–4335.
    Article CAS PubMed PubMed Central Google Scholar
  136. Peterson, K. R., Wertman, K. F., Mount, D. W., and Marinus, M. G., Viability of_Escherichia coli_ K-12 DNA adenine methylase (S) mutants requires increased expression of specific genes in the SOS regulon. Molec. gen. Genet.201 (1985) 14–19.
    Article CAS PubMed Google Scholar
  137. Phillips, T. A., VanBogelen, R. A., and Neidhardt, F. C.,lon gene product of_Escherichia coli_ is a heat shock protein. J. Bact.159 (1984) 283–287.
    Article CAS PubMed PubMed Central Google Scholar
  138. Pine, M. J., Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J. Bact.93 (1967) 1527–1533.
    Article CAS PubMed PubMed Central Google Scholar
  139. Pine, M. J., Steady-state measurements of the turnover of amino acid in the cellular protein of growing_Escherichia coli_: existence of two kinetically distinct reactions. J. Bact.103 (1970) 207–215.
    Article CAS PubMed PubMed Central Google Scholar
  140. Pine, M. J., Regulation of intracellular proteolysis in_Escherichia coli_. J. Bact.115 (1973) 1097–1116.
    Google Scholar
  141. Platt, T., Miller, J. H., and Weber, K., In vivo degradation of mutant_lac_ repressor. Nature (London)228 (1970) 1154–1156.
    Article CAS PubMed Google Scholar
  142. Rawlings, N. D., and Barrett, A. J., Homologues of insulinase, a new superfamily of metallopeptidases. Biochem. J.274 (1991) in press.
  143. Rechsteiner, M., Ubiquitin-mediated pathways for intracellular proteolysis. A. Rev. Cell Biol.3 (1987) 1–30.
    Article CAS Google Scholar
  144. Regnier, P. The purification of protease IV and the demonstration that it is a proteolytic enzyme. biochem. biophys. Res. Commun.99 (1981) 1369–1376.
    Article CAS PubMed Google Scholar
  145. Reiss, Y., Kaim, D., and Hershko, A., Specificity of binding of NH2-terminal residue of proteins to Ubiquitin-protein ligase. J. biol. Chem.263 (1988) 2693–2698.
    Article CAS PubMed Google Scholar
  146. Rivett, A. J., The multicatalytic proteinase of mammalian cells. Archs Biochem. Biophys.268 (1989) 1–8
    Article CAS Google Scholar
  147. Roberts, J. W., and Roberts, C. W., Proteolytic cleavage of bacteriophage lanbda repressor in induction. Proc. natl Acad. Sci. USA_72_ (1975) 147–151.
    Article CAS PubMed PubMed Central Google Scholar
  148. Roland, K., and Little, J. W., Reaction of LexA repressor with diisopropylfluoro phosphate: a test of the serine protease model. J. biol. Chem.265 (1990) 12828–12835.
    Article CAS PubMed Google Scholar
  149. Roseman, J. E., and Levine, R. L., Purification of a protease from_Escherichia coli_ with specificity for oxidized glutamine synthetase. J. biol. Chem.262 (1987) 2101–2110.
    Article CAS PubMed Google Scholar
  150. Rupprecht, K. R., and Markovitz, A., Conservation of_capR (lon)_ DNA of_Escherichia coli_ K-12 between distantly related species. J. Bact.155 (1983) 910–914.
    Article CAS PubMed PubMed Central Google Scholar
  151. Schroer, D. W., and St. John, A. C., Relative stability of membrane proteins in_Escherichia coli_. J. Bact.146 (1981) 476–483.
    Article CAS PubMed PubMed Central Google Scholar
  152. Sedgwick, B., in vitro proteolytic cleavage of the_Escherichia coli_ Ada protein by the_ompT_ gene product. J. Bact.171 (1989) 2249–2251.
    Article CAS PubMed PubMed Central Google Scholar
  153. Shinagawa, H., Iwasaki, H., Kato, T., and Nakata, A., RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc. natl Acad. Sci. USA_85_ (1988) 1806–1810.
    Article CAS PubMed PubMed Central Google Scholar
  154. Shineberg, B., and Zipser, D., The_lon_ gene and degradation of β-galactosidase nonsense fragments. J. Bact.116 (1973) 1469–1471.
    Article CAS PubMed PubMed Central Google Scholar
  155. Simon, L. D., Tomczak, K., and St. John, A. C., Bacteriophages inhibit degradation of abnormal proteins in_E coli_. Nature_275_ (1978) 424–428.
    Article CAS PubMed Google Scholar
  156. Skorupski, K., Tomaschewski, J., Ruger, W., and Simon, L. D., A bacteriophage T4 gene which functions to inhibit_Escherichia coli_ Lon protease. J. Bact.170 (1988) 3016–3024.
    Article CAS PubMed PubMed Central Google Scholar
  157. Skowyra, D., Georgopoulos, C., and Zylicz, M., The_E. coli dnaK_ gene product, the hsp 70 homologg, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell_62_ (1990) 939–944.
    Article CAS PubMed Google Scholar
  158. Slavicek, J. M., Jones, N. C., and Richter, J. D., Rapid turnover of adenovirus E1A is determined through a co-translational mechanism that requires an aminoterminal domain. EMBO J.7 (1988) 171–180
    Article Google Scholar
  159. Slilaty, S. N., and Little, J. W., Lysine-156 and serine-119 are required for LexA repressor cleavage: A possible mechanism. Proc. natl Acad. Sci. USA_84_ (1987) 3987–3991.
    Article CAS PubMed PubMed Central Google Scholar
  160. Squires, C. L., Pedersen, S., Ross, B. M., and Squires, C., ClpB is the_Escherichia coli_ heat shock protein F84.1. J. Bact.173 (1991) 4254–4262.
    Article CAS PubMed PubMed Central Google Scholar
  161. Squires, C. L., and Squires, C., The Clp proteins-proteolysis regulators or molecular chaperones? J. Bact.174 (1992) in press.
  162. St. John, A. C., and Goldberg, A. L., Effects of reduced energy production on protein degradation, guanosine tetraphosphate, and RNA synthesis in_Escherichia coli_. J. biol. Chem.253 (1978) 2705–2711.
    Article CAS PubMed Google Scholar
  163. St. John, A. C., and Goldberg, A. L., Effects of starvation for potassium and other inorganic ions on protein degradation and ribonucleic acid synthesis in_Escherichia coli_. J. Bact.143 (1978) 1223–1233.
    Article Google Scholar
  164. St. John, A. C., Jakubas, K., and Beim, D., Degradation of proteins in steady-state cultures of_Escherichia coli_. Biochim. biophys. Acta_586_ (1979) 537–544.
    Article CAS PubMed Google Scholar
  165. Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D., and Gottesman, S., RcsA, an unstable regulator of capsular polysaccharide synthesis. J. Bact.173 (1991) 1738–1747
    Article CAS PubMed PubMed Central Google Scholar
  166. Strauch, K., Johnson, K., and Beckwith, J., Characterization of_degP_, a gene required for proteolysis in the cell envelope and essential for growth of_Escherichia coli_ at high temperature. J. Bact.171 (1989) 2689–2696.
    Article CAS PubMed PubMed Central Google Scholar
  167. Strauch, K. L., and Beckwith, J., An_Escherichia coli_ mutation preventing degradation of abnormal periplasmic proteins. Proc. natl Acad. Sci. USA_85_ (1988) 1576–1580.
    Article CAS PubMed PubMed Central Google Scholar
  168. Straus, D. B., Walter, W. A., and Gross, C. A., The heat shock response of_E. coli_ is regulated by changes in the concentration of sigma 32. Nature (London)329 (1987) 348–391.
    Article CAS PubMed Google Scholar
  169. Straus, D. B., Walter, W. A., and Gross, C. A.,Escherichia coli heat shock gene mutants are defective in proteolysis. Genes Devl.2 (1988) 1851–1858.
    Article CAS Google Scholar
  170. Straus, D. B., Walter, W., and Gross, C. A., DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Devl.4 (1990) 2202–2209.
    Article CAS Google Scholar
  171. Strongin, A. Y., Gorodetsky, D. I., and Stepanov, V. M., The study of_Escherichia coli_ proteases. Intracellular serine protease of_E. coli_ — an analog of_Bacillus_ proteases. J. gen. Microbiol.110 (1979) 443–451.
    Article CAS PubMed Google Scholar
  172. Sugimura, K., and Nishihara, T., Purification, characterization, and primary structure of_Escherichia coli_ protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J. Bact.170 (1988) 5625–5632.
    Article CAS PubMed PubMed Central Google Scholar
  173. Swamy, K. H. S., Chung, C. H., and Goldberg, A. L., Isolation and characterization of protease Do from_Escherichia coli_, a large serine protease containing multiple subunits. Archs Biochem. Biophys.224 (1983) 543–554
    Article CAS Google Scholar
  174. Tilly, K., Spence, J., and Georgopoulos, C., Modulation of stability of the_Escherichia coli_ Heat Shock Regulatory Factor sigma 32, J. Bact.171 (1989) 1585–1589.
    Article CAS PubMed PubMed Central Google Scholar
  175. Torres-Cabassa, A. S., and Gottesman, S., Capsule synthesis in_Escherichia coli_ K-12 is regulated by proteolysis. J. Bact.169 (1987) 981–989.
    Article CAS PubMed PubMed Central Google Scholar
  176. Trempy, J. E., and Gottesman, S., Alp: A suppressor of Lon protease mutants in_Escherichia coli_. J. Bact.171 (1989) 3348–3353.
    Article CAS PubMed PubMed Central Google Scholar
  177. Tokunaga, M., Loranger, J. M., Wolfe, P. B., and Wu, H. C., Prolipoprotein signal peptidase in_Escherichia coli_ is distinct from the M13 precoat protein signal peptidase. J. biol. Chem.257 (1982) 9922–9925.
    Article CAS PubMed Google Scholar
  178. Tokunaga, M., Loranger, J. M., Chang, S. Y., Regue, M., Chang, S., and Wu, H. C., Identification of prolipoprotein signal peptidase and genomic organization of the Isp gene in_Escherichia coli_. J. biol. Chem.260 (1985) 5610–5616.
    Article CAS PubMed Google Scholar
  179. Tokunaga, M., Tokunaga, H., and Wu, H. C., Post-translational modification and processing of_Escherichia coli_ prolipoprotein in vitro. Proc. natl. Acad. Sci. USA_79_ (1982) 2255–2259.
    Article CAS PubMed PubMed Central Google Scholar
  180. Vaithilingam, I., and Cook, R. A., High-molecular-mass proteases (possibly proteasomes) in_Escherichia coli_ K12. Biochem. Int.19 (1989) 1297–1307.
    CAS PubMed Google Scholar
  181. Walker, G. C., The SOS Response of_Escherichia coli_, in:Escherichia coll and_Salmonella typhimurium_: Cellular and Molecular Biology pp. 41346–1357. Eds F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, American Society for Microbiology. Washington, D.C. 1987.
    Google Scholar
  182. Waxman, L., and Goldberg, A. L., Protease La from_Escherichia coli_ hydrolyzes ATP and proteins in a linked fashion. Proc. natl Acad. Sci. USA_79_ (1982) 4883–4887.
    Article CAS PubMed PubMed Central Google Scholar
  183. Waxman, L., and Goldberg, A. L., Protease La, the_lon_ gene product, cleaves specific fluorogenic peptides in an ATP-dependent reaction. J. biol. Chem.260 (1985) 12022–12028.
    Article CAS PubMed Google Scholar
  184. Waxman, L., and Goldberg, A. L., Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science_232_ (1986) 500–503.
    Article CAS PubMed Google Scholar
  185. Wolfe, P. B., Silver, P., and Wickner, W., The isolation of homogeneous leader peptidase from a strain of_Escherichia coli_ which overproduces the enzyme. J. biol. Chem.257 (1982) 7898–7902.
    Article CAS PubMed Google Scholar
  186. Woo, K. M., Chung, W. J., Ha, D. B., Goldberg, A. L., and Chung, C. H., Protease Ti from_Escherichia coli_ requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides. J. biol. Chem.264 (1989) 2088–2091.
    Article CAS PubMed Google Scholar
  187. Yen, C., Green, L., and Miller, C. G., Degradation of intracellular protein in_Salmonella typhimurium_ peptidase mutants. J. molec. Biol.143 (1980) 21–33.
    Article CAS PubMed Google Scholar
  188. Zehnbauer, B. A., Foley, E. C., Henderson, G. W., and Markovitz, A., Identification and purification of the_lon_ + (capR+) gene product, a DNA-binding protein. Proc. natl Acad. Sci. USA_78_ (1981) 2043–2047.
    Article CAS PubMed PubMed Central Google Scholar
  189. Zwizinski, C., and Wickner, W., Purification and characterization of leader (signal) peptidase from_Escherichia coli_. J. biol. Chem.255 (1980) 7973–7977.
    Article CAS PubMed Google Scholar
  190. Zwizinski, C., Date, T. and Wickner, W., Leader peptidase is found in both the inner and outer membranes of_Escherichia coli_. J. biol. Chem.256 (1981) 3593–3597.
    Article CAS PubMed Google Scholar

Download references