Proteases and protein degradation in Escherichia coli (original) (raw)
References
Amerik, A. Y., Antonov, V. K., Gorbalenya, A. E., Kotova, S. A., Rotanova, T. V., and Shimbarevich, E. V., Site-directed mutagenesis of La protease. FEBS Lett.287 (1991) 211–214. ArticleCAS Google Scholar
Bachmair, A., Finley, D., and Varshavsky, A., In vivo half-life of a protein is a function of its amino-terminal residue. Science_234_ (1986) 179–186. ArticleCASPubMed Google Scholar
Bachmair, A., and Varshavsky, A., The degradation signal in a short-lived protein. Cell_56_ (1989) 1019–1032. ArticleCASPubMed Google Scholar
Bahl, H., Echols, H., Straus, D. B., Court, D., Crowl, R., and Georgopoulos, C. P., Induction of the heat shock response of_E. coli_ through stabilization of sigma 32 by the phage lambda cIII protein. Genes Development_1_ (1987) 57–64. ArticleCASPubMed Google Scholar
Baker, T. A., Grossman, A. D., and Gross, C. A., A gene regulating the heat shock response in_Escherichia coli_ also affects proteolysis. Proc. natl Acad. Sci. USA_81_ (1984) 6779–6783. ArticleCASPubMedPubMed Central Google Scholar
Baneyx, F., and Georgiou, G., In vivo degradation of secreted fusion proteins by the_Escherichia coli_ outer membrane protease OmpT. J. Bact.172 (1990) 491–494. ArticleCASPubMedPubMed Central Google Scholar
Banuett, F., Hoyt, M. A., McFarlane, L., Echols, H., and Herskowitz, I.,hflB, a new_Escherichia coli_ locus regulating lysogeny and the level of bacteriophage lambda cII protein. J. molec. Biol.187 (1986) 213–224. ArticleCASPubMed Google Scholar
Ben-Bassat, A., Bauer, K., Chang, S. Y., Myambo, K., Bossman, A., and Chang, S., Processing of the initiation methionine from proteins: properties of the_Escherichia coli_ methionine peptidase and its structure. J. Bact.169 (1987) 751–757. ArticleCASPubMedPubMed Central Google Scholar
Bond, J. S., and Butler, P. E., Intracellular proteases. A. Rev. Biochem.56 (1987) 333–364. ArticleCAS Google Scholar
Bonnefoy, E., Almeida, A., and Rouviere-Yaniv, J., Lon-dependent regulation of the DNA-binding protein HU in_Escherichia coli_. Proc. natl Acad. Sci. USA_86_ (1990) 7691–7695. Article Google Scholar
Bowie, J. U., and Sauer, R. T., Identification of C-terminal extensions that protect proteins from intracellular proteolysis. J. biol. Chem.264 (1989) 7596–7602. ArticleCASPubMed Google Scholar
Bukhari, A. I., and Zipser, D., Mutants of_Escherichia coli_ with a defect in the degradation of nonsense fragments. Nature_243_ (1973) 238–241. CAS Google Scholar
Burckhardt, S. E., Woodgate, R., Scheuermann, R. H., and Echols, H., UmuD mutagenesis protein of_Escherichia coli_: Overproduction, purification, and cleavage by RecA. Proc. natl Acad. Sci. USA_85_ (1988) 1811–1815. ArticleCASPubMedPubMed Central Google Scholar
Canceill, D., Dervyn, E., and Huisman, O., Proteolysis and modulation of the activity of the cell division inhibitor SulA in_Escherichia coli Ion_ mutants. J. Bact.172 (1990) 7297–7300. ArticleCASPubMedPubMed Central Google Scholar
Caron, P. R., and Grossman, L., Potential role of proteolysis in the control of UvrABC incision. Nucl. Acids Res.16 (1988) 10903–10912. ArticleCASPubMedPubMed Central Google Scholar
Cavard, D., and Lazdunski, C., Colicin cleavage by OmpT protease during both entry into and release from_Escherichia coli_ cells. J. Bact.172 (1990) 648–652. ArticleCASPubMedPubMed Central Google Scholar
Cavard, D., Lazdunski, C., and Howard, S. P., The acylated precursor form of the Colicin A lysis protein is a natural substrate of the DegP protease. J. Bact.171 (1989) 6316–6322. ArticleCASPubMedPubMed Central Google Scholar
Charette, M., Henderson, G. W., and Markovitz, A., ATP hydrolysis-dependent activity of the_lon(capR)_ protein of_E. coli_ K12. Proc. natl Acad. Sci. USA_78_ (1981) 4728–4732. ArticleCASPubMedPubMed Central Google Scholar
Charette, M. F., Henderson, G. W., Doane, L. L., and Markovitz, A., DNA Stimulated ATPase Activity of the Lon (CapR) Protein. J. Bact.158 (1984) 195–201. ArticleCASPubMedPubMed Central Google Scholar
Cheng, H. H., Muhlrad, P. J., Hoyt, A., and Echols, H., Cleavage of the cII protein of phage lambda purified HflA protease: control of the switch between lysis and lysogeny. Proc. natl Acad. Sci. USA_85_ (1988) 7882–7886. ArticleCASPubMedPubMed Central Google Scholar
Cheng, Y. S., and Zipser, D., Purification and characterization of protease III from_Escherichia coli_. J. biol. Chem.254 (1979) 4698–4706. ArticleCASPubMed Google Scholar
Cheng, Y.-S. E., Zipser, D., Cheng, C.-Y., and Roiseth, S. J., Isolation and characterization of mutations in the structural gene for protease III (ptr). J. Bact.140 (1979) 125–130. ArticleCASPubMedPubMed Central Google Scholar
Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L., Sequence of the_Ion_ gene in_Escherichia coli_: A heat-shock gene which encodes the ATP-dependent protease La. J. biol. Chem.263 (1988) 11718–11728. ArticleCASPubMed Google Scholar
Chung, C. H., and Goldberg, A. L., DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from_Escherichia coli_. Proc. natl Acad. Sci. USA_79_ (1982) 795–799. ArticleCASPubMedPubMed Central Google Scholar
Chung, C. H., and Goldberg, A. L., The product of the_Ion(capR)_ gene in_Escherichia coli_ is the ATP-dependent protease, protease La. Proc. natl Acad. Sci. USA_78_ (1981) 4931–4935. ArticleCASPubMedPubMed Central Google Scholar
Chung, C. H., and Goldberg, A. L., Purification and characterization of protease So, a cytoplasmic serine protease in_Escherichia coli_. J. Bact.154 (1983) 231–238. ArticleCASPubMedPubMed Central Google Scholar
Chung, C. H., Ives, H. E., Almeda, S., and Goldberg, A. L., Purification from_Escherichia coli_ of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J. biol. Chem.258 (1983) 11032–11038. ArticleCASPubMed Google Scholar
Claverie-Martin, F., Diaz-Torres, M. R., Kushner, S. R., Analysis of the regulatory region of the protease III (ptr) gene of_Escherichia coli_ K12. Gene_54_ (1987) 185–195. ArticleCASPubMed Google Scholar
Craig, N. L., and Roberts, J. W., Function of nucleoside triphosphate and polynucleotide in_Escherichia coli recA_ protein directed cleavage of phage lambda repressor. J. biol. Chem.256 (1981) 8039–8044. ArticleCASPubMed Google Scholar
Davies, K. J. A., and Lin, S. W., Degradation of oxidatively denatured protein in_Escherichia coli_. Free Radic. Biol. Med.5 (1988) 215–223. ArticleCASPubMed Google Scholar
Dennis, P. P., Synthesis and stability of individual ribosomal proteins in the presence of rifampicin. Mol. gen. Genet.134 (1974) 39–47. ArticleCASPubMed Google Scholar
Derbyshire, C., Kramer, M., and Grindley, N. D. F., Role of instability in the cis action of the insertion sequence IS903 transposase. Proc. natl Acad. Sci. USA_87_ (1990) 4048–4052. ArticleCASPubMedPubMed Central Google Scholar
Dervyn, E., Canceill, D., and Huisman, O., Saturation and specificity of the Lon protease of_Escherichia coli_. J. Bact.172 (1990) 7098–7103. ArticleCASPubMedPubMed Central Google Scholar
Desautels, M., and Goldberg, A. L., Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. natl Acad. Sci. USA_79_ (1982) 1869–1873. ArticleCASPubMedPubMed Central Google Scholar
Donch, J., and Greenberg, J., Genetic analysis of_lon_ mutants of strain K-12 of_Escherichia coli_. Mol. gen. Genet.103 (1968) 105–115. ArticleCASPubMed Google Scholar
Downs, D., Waxman, L., Goldberg, A. L., and Roth, J., Isolation and characterization of_lon_ mutants in_Salmonella typhimurium_. J. Bact.167 (1986) 193–197.40. Article Google Scholar
Dykstra, C. C., and Kushner, S. R., Physical Characterization of the cloned Protease III gene from_Escherichia coli_ K-12 J. Bact.163 (1985) 1055–1059. ArticleCASPubMedPubMed Central Google Scholar
Edmunds, T., and Goldberg, A. L., Role of ATP hydrolysis in the degradation of proteins by protease La from_Escherichia coli_. J. cell. Biochem.32 (1986) 187–191. ArticleCASPubMed Google Scholar
Eytan, E., Ganoth, D., Armon, T., and Hershko, A., ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. natl Acad. Sci. USA_86_ (1989) 7751–7755. ArticleCASPubMedPubMed Central Google Scholar
Falkenburg, P. E., Haass, C., Kloetzel, P. M., Niedel, B., Kopp, F., Kuehn, L., and Dahlmann, B., Drosophila small cytoplasmic 19S ribonucleoprotein is homologous to the rat multicatalytic proteinase. Nature_331_ (1988) 190–192. ArticleCASPubMed Google Scholar
Finley, D., Ciechanover, A., and Varshavsky, A., Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant_ts85_. Cell_37_ (1984) 43–55. ArticleCASPubMed Google Scholar
Finch, P. W., Wilson, R. R., Brown, K., Hickson, I. D., and Emmerson, P. T., Complete nucleotide sequence of the_Escherichia coli ptr_ gene encoding Protease III. Nucl. Acids Res.14 (1986) 7695–7703. ArticleCASPubMedPubMed Central Google Scholar
Fujiwara, T., Tanaka, K., Orino, E., Hoshimura, T., Kumatori, A., Tamura, T., Chung, C. H., Nakai, T., Yamaguchi, K., Shin, S., Kakizuka, A., Nakanishi, S., and Ichihara, A., Proteasomes are essential for yeast proliferation. J. biol. Chem.265 (1990) 16604–1663. ArticleCASPubMed Google Scholar
Ganoth, D., Leshinsky, E., Eytan, E., and Hershko, A., A multicomponent system that degrades proteins conjugated to ubiquitin. J. biol. Chem.263 (1988) 12412–12419. ArticleCASPubMed Google Scholar
Georgopoulos, C., Ang. D., Libeleric, K., and Zylicz, M., Properties of the_Escherichia coli_ heat shock proteins and their role in bacteriophage λ growth in: Stress Proteins in Biology and Medicine, pp. 191–221. Eds R. Morimoto, A. Tissieres and C. Georgopoulos. Cold Spring Harbor Press 1990.
Goff, S. A., and Goldberg, A. L., An increased content of protease La, the_lon_ gene product, increases protein degradation and blocks growth in_Escherichia coli_. J. biol. Chem.262 (1987) 4508–4515. ArticleCASPubMed Google Scholar
Goff, S. A., Casson, L. P., and Goldberg, A. L., Heat shock regulatory gene_htpR_ influences rates of protein degradation and expression of the_lon_ gene in_Escherichia coli_. Proc. natl Acad. Sci. USA_81_ (1984) 6647–6651. ArticleCASPubMedPubMed Central Google Scholar
Goff, S. A., and Goldberg, A. L., Production of abnormal proteins in_E. coli_ stimulates transcription of_lon_ and other heat shock genes. Cell_41_ (1985) 587–595. ArticleCASPubMed Google Scholar
Goldberg, A. L., and St. John, A. C., Intracellular protein degradation in mammalian and bacterial cells: part 2. A. Rev. Biochem.45 (1976) 747–803. ArticleCAS Google Scholar
Goldberg, A. L., Streedhara Swamy, K. H., Chung, C. H., and Larimore, F. S., Proteases of_Escherichia coli_. Meth. Enzym.80 (1983) 680–702. Article Google Scholar
Goldberg, A. L., and Waxman, L., The role of ATP hydrolysis in the breakdown of proteins and peptides by protease La from_Escherichia coli_. J. biol. Chem.260 (1985) 12029–12034. ArticleCASPubMed Google Scholar
Goldschmidt, R., In vivo degradation of nonsense fragements in_E. coli_. Nature (London)228 (1970) 1151–1154. ArticleCASPubMed Google Scholar
Gottesman, S., Regulation by proteolysis, in:Escherichia coli and_Salmonella typhimurium_: Cellular and Molecular Biology, pp. 1308–1312. Eds F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaecter and H. E. Umbarger. American Society for Microbiology, Washington, D.C. 1987. Google Scholar
Gottesman, S., Genetics of proteolysis in_Escherichia coli_. A. Rev. Genet.23 (1989) 163–198. ArticleCAS Google Scholar
Gottesman, S., Clark, W. P., and Maurizi, M. R., The ATP-dependent Clp protease of_Escherichia coli_ sequence of_clpA_ and identification of a Clp-specific substrate. J. Biol. Chem.265 (1990) 7886–7893. ArticleCASPubMed Google Scholar
Gottesman, S., Gottesman, M., Shaw, J., and Pearson, M. L., Protein degradation in_E. coli_: the_lon_ mutation and bacteriophage lambda N and cII protein stability. Cell_24_ (1981) 225–233. ArticleCASPubMed Google Scholar
Gottesman, S., Squires, C., Pichersky, E., Carrington, M., Hobbs, M., Mattick, J. S., Dalrymple, B., Kuramitsu, H., Shiroza, T., Foster, T., Clark, W. P., Ross, B., Squires, C., and Maurizi, M. R., Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. natl Acad. Sci. USA_87_ (1990) 3513–3517. ArticleCASPubMedPubMed Central Google Scholar
Grodberg, J., and Dunn, J. J.,ompT Encodes the_Escherichia coli_ outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bact.170 (1988) 1245–1253. ArticleCASPubMedPubMed Central Google Scholar
Grossman, A. D., Burgess, R., Walter, W., and Gross, C., Mutations in the_lon_ gene of_E. coli_ K12 phenotypically suppress a mutation in the sigma subunit of RNA polymerase. Cell_32_ (1983) 151–159 ArticleCASPubMed Google Scholar
Grossman, A. D., Erickson, J. W., and Gross, C. A., The_htpR_ gene product of_E. coli_ is a sigma factor for heat shock promoters. Cell_38_ (1984) 383–390. ArticleCASPubMed Google Scholar
Grossman, A. D., Straus, D. B., Walter, W. A., and Gross, C. A., Sigma 32 synthesis can regulate the synthesis of heat shock proteins in_Escherichia coli_. Genes Dev.1 (1987) 179–184. ArticleCASPubMed Google Scholar
Heinemeyer, W., Kleinschmidt, J. A., Saidowsky, J., Escher, C., and Wolf, D. H., Proteinase YscE, the yeast proteasome/multicatalyticmultifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J.10 (1991) 555–562. ArticleCASPubMedPubMed Central Google Scholar
Hershko, A., Ubiquitin-mediated protein degradation. J. biol. Chem.263 (1990) 15237–15240 Article Google Scholar
Holck, A., and Kleppe, K., Cloning and sequence of the gene for the DNA-binding 17K protein of_Escherichia coli_. Gene_67_ (1988) 117–124. ArticleCASPubMed Google Scholar
Hopfield, J. J., Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. natl Acad. Sci. USA_71_ (1974) 4135–4139. ArticleCASPubMedPubMed Central Google Scholar
Hough, R., Pratt, G., and Rechensteiner, M., Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. biol. Chem.262 (1987) 8303–8313. ArticleCASPubMed Google Scholar
Hoyt, M. A., Knight, D. M., Das, A., Miller, H. I., and Echols, H., Control of phage lambda development by stability and synthesis of cII protein: Role of the viral cIII and host_hflA, himA_ and_himD_ genes. Cell_31_ (1982) 565–573. ArticleCASPubMed Google Scholar
Huisman, O., D'Ari, R., and Gottesman, S., Cell division control in_Escherichia coli_: specific induction of the SOS SfiA protein is sufficient to block septation. Proc. natl Acad. Sci. USA_81_ (1984) 4490–4494. ArticleCASPubMedPubMed Central Google Scholar
Hwang, B. J., Park, W. J., Chung, C. H., and Goldberg, A. L.,Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La. Proc. natl Acad. Sci. USA_84_ (1987) 5550–5554. ArticleCASPubMedPubMed Central Google Scholar
Hwang, B. J., Woo, K. M., Goldberg, A. L., and Chung, C. H., Protease Ti, a new ATP-dependent protease in_Escherichia coli_ contains protein-activated ATPase and proteolytic functions in distinct subunits. J. biol. Chem.263 (1988) 8727–8734. ArticleCASPubMed Google Scholar
Ichihara, S., Beppu, N., and Mizushima, S., Protease IV, a cytoplasmic membrane protein of_Escherichia coli_, has signal peptide peptidase activity. J. biol. Chem.259 (1984) 9853–9857. ArticleCASPubMed Google Scholar
Ichihara, S., Suzuki, T., Suzuki, M., and Mizushima, S., Molecular cloning and sequencing of the_sppA_ gene and characterization of the encoded protease IV, a signal peptide peptidase, of_Escherichia coli_. J. biol. Chem.261 (1986) 9405–9411. ArticleCASPubMed Google Scholar
Innis, M. A., Tokunaga, M., Williams, M. E., Loranger, J. M., Chang, S. Y., Chang, S., and Wu, H. C., Nucleotide sequence of the_Escherichia coli_ prolipoprotein signal peptidase (lsp) gene. Proc. natl Acad. Sci. USA_81_ (1984) 3708–3712. ArticleCASPubMedPubMed Central Google Scholar
Ishihama, A., Fujita, N., and Glass, R. E., Subunit assembly and metabolic stability of_E. coli_ RNA polymerase. Prot. Struct. Funct. Gen.2 (1987) 42–53. ArticleCAS Google Scholar
Johnson, C., Chandrasekhar, G. N., and Georgopoulos, C.,Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro. J. Bact.171 (1989) 1590–1596. ArticleCASPubMedPubMed Central Google Scholar
Jones, C. A., and Holland, I. B., Role of the SfiB (FtsZ) protein in division inhibition during the SOS response in_E. coli_: FtsZ stabilizes the inhibitor SfiA in maxicells. Proc. natl Acad. Sci. USA_82_ (1985) 6045–6049. ArticleCASPubMedPubMed Central Google Scholar
Katayama, Y., Gottesman, S., Pumphrey, J., Rudikoff, S., Clark, W. P., and Maurizi, M. R., The two-component ATP-dependent Clp Protease of_Escherichia coli_: purification, cloning, and mutational analysis of the ATP-binding component. J. biol. Chem.263 (1988) 15226–15236. ArticleCASPubMed Google Scholar
Katayama-Fujimura, Y., Gottesman, S., and Maurizi, M. R., a multiple-component, ATP-dependent protease from_Escherichia coli_. J. biol. Chem.262 (1987) 4477–4485. ArticleCASPubMed Google Scholar
Keller, J. A., and Simon, L. D., Divergent effects of a_dnaK_ mutation on abnormal protein degradation in_Escherichia coli_. Molec. Microbiol.2 (1988) 31–41. ArticleCAS Google Scholar
Kitagawa, M., Wada, C., Yoshioka, S., and Yura, T., Expression of ClpB, an analog of the ATP-dependent protease-regulatory subunit in_Escherichia coli_ is controlled by heat shock σ factor (σ32). J. Bact.173 (1991) 4247–4253. ArticleCASPubMedPubMed Central Google Scholar
Kornitzer, D., Altuvia, S., and Oppenheim, A. B., The activity of the CIII regulator of lamboid bacteriophages resides within a 24-amino acid protein domain. Proc. natl Acad. Sci. USA_88_ (1991).
Kroh, H. E., and Simon, L. E., The ClpP component of Clp protease is the σ32-dependent heat shock protein F21.5. J. Bact.172 (1990) 6026–6034. ArticleCASPubMedPubMed Central Google Scholar
Kuhn, A., and Wickner, W., Conserved residues of the leader peptide are essential for cleavage by leader peptidase. J. biol. Chem.260 (1985) 55914–15918. Article Google Scholar
Lazarides, E., and Moon, R. T., Assembly and topogenesis of the spectrin-based membrane skeleton in erythroid development. Cell_37_ (1984) 354–356. ArticleCASPubMed Google Scholar
Lee, C. S., Hahm, J. K., Hwang, B. J., Park, K. C., Ha, D. B., Park, S. D., and Chung, C. H., Processing of Ada protein by two serine endoproteases Do and So from_Escherichia coli_. FEBS Lett.262 (1990) 310–312. ArticleCASPubMed Google Scholar
Lee, Y. S., Park, S. C., Goldberg, A. L., and Chung, C. H., Protease So from_Escherichia coli_ preferentially degrades oxidatively damaged glutamine synthetase. J. biol. Chem.263 (1988) 6643–6646. ArticleCASPubMed Google Scholar
Lindahl, T., Sedgwick, B., Sekiguchi, M., and Nakabeppu, Y., Regulation and expression of the adaptive response to alkylating agents. A. Rev. Biochem.57 (1988) 133–157. ArticleCAS Google Scholar
Lipinska, B., Fayet, O., Baird, L., and Georgopoulos, C. Identification, characterization, and mapping of the_Escherichia coli htrA_ gene, whose product is essential for bacterial growth only at elevated temperatures. J. Bact.171 (1989) 1574–1584. ArticleCASPubMedPubMed Central Google Scholar
Lipinska, B., Zylicz, M., and Georgopoulos, C., The HtrA (DegP) protein, essential for_Escherichia coli_ survival at high temperatures, is an endopeptidase. J. Bact.172 (1990) 1791–1797. ArticleCASPubMedPubMed Central Google Scholar
Little, J. W., Edmiston, S. H., Pacelli, L. Z., and Mount, D. W., Cleavage of the_Escherichia coli lexA_ protein by the_recA_ protease. Proc. natl Acad Sci. USA_77_ (1980) 3225–3229. ArticleCASPubMedPubMed Central Google Scholar
Little, J. W., and Mount, D. W., The SOS regulatory system of_Escherichia coli_. Cell_29_ (1982) 11–22. ArticleCASPubMed Google Scholar
Mandelstam, J., Turnover of protein in growing and nongrowing population of_Escherichia coli_. Biochem. J.169 (1958) 110–119. Article Google Scholar
Maurizi, M. R., Degradation in vitro of bacteriophage lambda N protein by Lon protease from_Escherichia coli_. J. biol. Chem.262 (1987) 2696–2703. ArticleCASPubMed Google Scholar
Maurizi, M. R., ATP-promoted interaction between ClpA and ClpP in activation of Clp protease from_Escherichia coli_. Biochem. Soc. Trans. (1991) in press.
Maurizi, M. R., Katayama, Y., and Gottesman, S., Selective ATP-dependent degradation of proteins in_Escherichia coli_, in: The Ubiquitin System. Current Communications in Molecular Biology, pp. 147–154. Ed. M. J. Schlesinger. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1988. Google Scholar
Maurizi, M. R., Clark, W. P., Katayama, Y., Rudikoff, S., Pumphrey, J., Bowers, B., and Gottesman, S., Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of_Escherichia coli_. J. biol. Chem.265 (1990) 12536–12545. ArticleCASPubMed Google Scholar
Maurizi, M. R., Clark, W. P., Kim, S. H., and Gottesman, S. J., ClpP represnts a unique family of serine proteases. Biol. Chem.265 (1990) 12546–12552. ArticleCAS Google Scholar
Maurizi, M. R., and Switzer, R. L., Proteolysis in bacterial sporulation. Curr. Top. Cell Regul.16 (1979) 163–224. Article Google Scholar
Maurizi, M. R., Trisler, P., and Gottesman, S., Insecrtional mutagenesis of the_lon_ gene in_Escherichia coli: lon_ is dispensable. J. Bact.164 (1985) 1124–1135. ArticleCASPubMedPubMed Central Google Scholar
mcGrath, M. E., Hines, W. M., Sakanari, J. A., Fletterick, R. J., and Craik, C. S., The sequence and reactive site of Ecotin. J. biol. Chem.266 (1991) 6620–6625. ArticleCASPubMed Google Scholar
Menon, A. S., and Goldberg, A. L., binding of nucleotides to the ATP-dependent protease La from_Escherichia coli_. J. biol. Chem.262 (1987) 14921–14928. ArticleCASPubMed Google Scholar
Menon, A. S., and Goldberg, A. L., Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J. biol. Chem.262 (1987) 14929–14934. ArticleCASPubMed Google Scholar
Menon, A. S., Waxman, L., and Goldberg, A. L., The energy utilized in protein breakdown by the ATP-dependent protease La from_Escherichia coli_. J. biol. Chem.262 (1987) 722–726. ArticleCASPubMed Google Scholar
Michaelis, S., and Beckwith, J., Mechanism of incorporation of cell envelop proteins in_Escherichia coli_. A. Rev. Microbiol.36 (1982) 435–465. ArticleCAS Google Scholar
Miller, C. G., Protein degradation and proteolytic modification in:Escherichia coli and_Salmonella typhimurium_: Cellular and Molecular Biology, pp. 680–691. Eds F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. Umbarger. American Society for Microbiology, Washington, D.C. 1987. Google Scholar
Miller, C. G., Genetics and physiological roles of_Salmonella typhimurium_ peptidases, in: Microbiology 1985, pp. 346–349. Ed. L. Leive. American Society for Microbiology, Washington, D.C. 1985. Google Scholar
Mizusawa, S., and Gottesman, S., Protein degradation in_Escherichia coli_: The_lon_ gene controls the stability of the SulA protein. Proc. natl Acad. Sci. USA_80_ (1983) 358–362. ArticleCASPubMedPubMed Central Google Scholar
Mosteller, R. D., Goldstein, R. V., and Nishimoto, K. R., Metabolism of individual proteins in exponentially growing_Escherichia coli_. J. biol. Chem.255 (1980) 2524–2532. ArticleCASPubMed Google Scholar
Moesteller, R. D., Nishimoto, K. R., and Goldstein, R. V., Inactivation and partial degradation of phosphoribosylanthranilate isomerase-indoleglycerol phosphate synthetase in nongrowing cultures of_Escherichia coli_. J. Bact.131 (1977) 153–162. Article Google Scholar
Murray, A. W., Solomon, M. J., and Kirschner, M. W., The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature_339_ (1989) 280–286. ArticleCASPubMed Google Scholar
Nash, H. A., Robertson, C. A., Flamm, E., Weisberg, R. A., and Miller, H. I., Overproduction of_Escherichia coli_: integration host factor, a protein with nonidentical subunits. J. Bact.169 (1987) 4124–4127. ArticleCASPubMedPubMed Central Google Scholar
Neidhardt, F. C., VanBogelen, R. A., and Vaughn, V., The genetics and regulation of the heat shock proteins. A. Rev. Genet.18 (1984) 295–329. ArticleCAS Google Scholar
Nishi, K., and Schnier, J., The phenotypic suppression of a mutation in the gene_rplX_ for ribosomal protein L24 by mutations affecting the lon gene product for protease La in_Escherichia coli_ K12. Molec. gen. Genet.212 (1988) 177–181. ArticleCASPubMed Google Scholar
Nohmi, T., Battista, J. R., Dodson, L. A., and Walker, G. C., RecAmediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. natl Acad. sci. USA_85_ (1988) 1816–1820. ArticleCASPubMedPubMed Central Google Scholar
Novak, P., Ray, P. H., and Dev, I. K., Localization and purification of two enzymes from_Escherichia coli_ capable of hydrolyzing a signal peptide. J. biol. Chem.261 (1986) 420–427. ArticleCASPubMed Google Scholar
Olden, K., and Goldberg, A. L., Studies on the energy requirement for intracellular protein degradation in_Escherichia coli_. Biochim. biophys. Acta_542_ (1978) 385–598. ArticleCAS Google Scholar
Oliver, D., Protein secretion in_Escherichia coli_. A. Rev. Microbiol.39, (1985) 615–648 ArticleCAS Google Scholar
Orlowski, M., The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry_29_ (1990) 10289–10297. ArticleCASPubMed Google Scholar
Pacaud, M., Sibilli L., and Le Bras, G., Protease I from_Escherichia coli_. Eur. J. Biochem.69 (1976) 141–151. ArticleCASPubMed Google Scholar
Pacaud, M., Protease II from_Escherichia coli_: substrate specificity and kinetic properties. Eur. J. Biochem.82 (1978) 439–451. ArticleCASPubMed Google Scholar
Pacaud, M., Purification and characterization of two novel proteolytic enzymes in membranes of_Escherichia coli_. J. biol. Chem.257 (1982) 4333–4339 ArticleCASPubMed Google Scholar
Pakula, A. A., Young, V. B., and Sauer, R. T., Bacteriophage λ Cro mutations: effects on activity and intracellular degradation. Proc. natl Acad. Sci. USA_83_ (1986) 8829–8833. ArticleCASPubMedPubMed Central Google Scholar
Palmer, S. M., and St, John, A. C., Characterization of a membraneassociated serine protease in_Escherichia coli_. J. Bact.169 (1987) 1474–1479. ArticleCASPubMedPubMed Central Google Scholar
Park, J. H., Lee, Y. S., Chung, C. H., and goldberg, A. L., Purification and characterization of protease Re, a cytoplasmic endoprotease in_Escherichia coli_. J. Bact.170 (1988) 921–926. ArticleCASPubMedPubMed Central Google Scholar
Parsell, D. A., Sanchez, Y., Stitzel, J. D., and Lindquist, S., Hsp 104 is a highly conserved protein with two essential nucleotide-binding sites. Nature (London)353 (1991) 270–273. ArticleCASPubMed Google Scholar
Parsell, D. A., and Sauer, R. T., The structural stability of a protein is an important determinant of its proteolytic susceptibility in_E. coli_. J. biol. Chem.264 (1989) 7590–7595. ArticleCASPubMed Google Scholar
Parsell, D. A., Silber, K. R., and Sauer, R. t., Carboxy-terminal determinants of intracellular protein degradation. Genes Devl.4 (1990) 277–286. ArticleCAS Google Scholar
Pato, M. L., and Reich, C., Instability of transposase activity: evidence from bacteriophage Mu DNA replication. Cell_29_ (1982) 219–225. ArticleCASPubMed Google Scholar
Pelham, H. R. B., Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell_46_ (1986) 959–961. ArticleCASPubMed Google Scholar
Perry, K. L., Elledge, S. J., Mitchell, B. B., Marsh, L., and Walker, G. C.,mucDC and_mucAB_ operons whose products are required for UV light-and chemical-induced mutagenesis: umuD, MucA, and LexA proteins share homology. Proc. natl Acad. Sci. USA_82_ (1985) 4331–4335. ArticleCASPubMedPubMed Central Google Scholar
Peterson, K. R., Wertman, K. F., Mount, D. W., and Marinus, M. G., Viability of_Escherichia coli_ K-12 DNA adenine methylase (S) mutants requires increased expression of specific genes in the SOS regulon. Molec. gen. Genet.201 (1985) 14–19. ArticleCASPubMed Google Scholar
Phillips, T. A., VanBogelen, R. A., and Neidhardt, F. C.,lon gene product of_Escherichia coli_ is a heat shock protein. J. Bact.159 (1984) 283–287. ArticleCASPubMedPubMed Central Google Scholar
Pine, M. J., Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J. Bact.93 (1967) 1527–1533. ArticleCASPubMedPubMed Central Google Scholar
Pine, M. J., Steady-state measurements of the turnover of amino acid in the cellular protein of growing_Escherichia coli_: existence of two kinetically distinct reactions. J. Bact.103 (1970) 207–215. ArticleCASPubMedPubMed Central Google Scholar
Pine, M. J., Regulation of intracellular proteolysis in_Escherichia coli_. J. Bact.115 (1973) 1097–1116. Google Scholar
Platt, T., Miller, J. H., and Weber, K., In vivo degradation of mutant_lac_ repressor. Nature (London)228 (1970) 1154–1156. ArticleCASPubMed Google Scholar
Rawlings, N. D., and Barrett, A. J., Homologues of insulinase, a new superfamily of metallopeptidases. Biochem. J.274 (1991) in press.
Rechsteiner, M., Ubiquitin-mediated pathways for intracellular proteolysis. A. Rev. Cell Biol.3 (1987) 1–30. ArticleCAS Google Scholar
Regnier, P. The purification of protease IV and the demonstration that it is a proteolytic enzyme. biochem. biophys. Res. Commun.99 (1981) 1369–1376. ArticleCASPubMed Google Scholar
Reiss, Y., Kaim, D., and Hershko, A., Specificity of binding of NH2-terminal residue of proteins to Ubiquitin-protein ligase. J. biol. Chem.263 (1988) 2693–2698. ArticleCASPubMed Google Scholar
Rivett, A. J., The multicatalytic proteinase of mammalian cells. Archs Biochem. Biophys.268 (1989) 1–8 ArticleCAS Google Scholar
Roberts, J. W., and Roberts, C. W., Proteolytic cleavage of bacteriophage lanbda repressor in induction. Proc. natl Acad. Sci. USA_72_ (1975) 147–151. ArticleCASPubMedPubMed Central Google Scholar
Roland, K., and Little, J. W., Reaction of LexA repressor with diisopropylfluoro phosphate: a test of the serine protease model. J. biol. Chem.265 (1990) 12828–12835. ArticleCASPubMed Google Scholar
Roseman, J. E., and Levine, R. L., Purification of a protease from_Escherichia coli_ with specificity for oxidized glutamine synthetase. J. biol. Chem.262 (1987) 2101–2110. ArticleCASPubMed Google Scholar
Rupprecht, K. R., and Markovitz, A., Conservation of_capR (lon)_ DNA of_Escherichia coli_ K-12 between distantly related species. J. Bact.155 (1983) 910–914. ArticleCASPubMedPubMed Central Google Scholar
Sedgwick, B., in vitro proteolytic cleavage of the_Escherichia coli_ Ada protein by the_ompT_ gene product. J. Bact.171 (1989) 2249–2251. ArticleCASPubMedPubMed Central Google Scholar
Shinagawa, H., Iwasaki, H., Kato, T., and Nakata, A., RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc. natl Acad. Sci. USA_85_ (1988) 1806–1810. ArticleCASPubMedPubMed Central Google Scholar
Simon, L. D., Tomczak, K., and St. John, A. C., Bacteriophages inhibit degradation of abnormal proteins in_E coli_. Nature_275_ (1978) 424–428. ArticleCASPubMed Google Scholar
Skorupski, K., Tomaschewski, J., Ruger, W., and Simon, L. D., A bacteriophage T4 gene which functions to inhibit_Escherichia coli_ Lon protease. J. Bact.170 (1988) 3016–3024. ArticleCASPubMedPubMed Central Google Scholar
Skowyra, D., Georgopoulos, C., and Zylicz, M., The_E. coli dnaK_ gene product, the hsp 70 homologg, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell_62_ (1990) 939–944. ArticleCASPubMed Google Scholar
Slavicek, J. M., Jones, N. C., and Richter, J. D., Rapid turnover of adenovirus E1A is determined through a co-translational mechanism that requires an aminoterminal domain. EMBO J.7 (1988) 171–180 Article Google Scholar
Slilaty, S. N., and Little, J. W., Lysine-156 and serine-119 are required for LexA repressor cleavage: A possible mechanism. Proc. natl Acad. Sci. USA_84_ (1987) 3987–3991. ArticleCASPubMedPubMed Central Google Scholar
Squires, C. L., Pedersen, S., Ross, B. M., and Squires, C., ClpB is the_Escherichia coli_ heat shock protein F84.1. J. Bact.173 (1991) 4254–4262. ArticleCASPubMedPubMed Central Google Scholar
Squires, C. L., and Squires, C., The Clp proteins-proteolysis regulators or molecular chaperones? J. Bact.174 (1992) in press.
St. John, A. C., and Goldberg, A. L., Effects of reduced energy production on protein degradation, guanosine tetraphosphate, and RNA synthesis in_Escherichia coli_. J. biol. Chem.253 (1978) 2705–2711. ArticleCASPubMed Google Scholar
St. John, A. C., and Goldberg, A. L., Effects of starvation for potassium and other inorganic ions on protein degradation and ribonucleic acid synthesis in_Escherichia coli_. J. Bact.143 (1978) 1223–1233. Article Google Scholar
St. John, A. C., Jakubas, K., and Beim, D., Degradation of proteins in steady-state cultures of_Escherichia coli_. Biochim. biophys. Acta_586_ (1979) 537–544. ArticleCASPubMed Google Scholar
Stout, V., Torres-Cabassa, A., Maurizi, M. R., Gutnick, D., and Gottesman, S., RcsA, an unstable regulator of capsular polysaccharide synthesis. J. Bact.173 (1991) 1738–1747 ArticleCASPubMedPubMed Central Google Scholar
Strauch, K., Johnson, K., and Beckwith, J., Characterization of_degP_, a gene required for proteolysis in the cell envelope and essential for growth of_Escherichia coli_ at high temperature. J. Bact.171 (1989) 2689–2696. ArticleCASPubMedPubMed Central Google Scholar
Strauch, K. L., and Beckwith, J., An_Escherichia coli_ mutation preventing degradation of abnormal periplasmic proteins. Proc. natl Acad. Sci. USA_85_ (1988) 1576–1580. ArticleCASPubMedPubMed Central Google Scholar
Straus, D. B., Walter, W. A., and Gross, C. A., The heat shock response of_E. coli_ is regulated by changes in the concentration of sigma 32. Nature (London)329 (1987) 348–391. ArticleCASPubMed Google Scholar
Straus, D. B., Walter, W. A., and Gross, C. A.,Escherichia coli heat shock gene mutants are defective in proteolysis. Genes Devl.2 (1988) 1851–1858. ArticleCAS Google Scholar
Straus, D. B., Walter, W., and Gross, C. A., DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Devl.4 (1990) 2202–2209. ArticleCAS Google Scholar
Strongin, A. Y., Gorodetsky, D. I., and Stepanov, V. M., The study of_Escherichia coli_ proteases. Intracellular serine protease of_E. coli_ — an analog of_Bacillus_ proteases. J. gen. Microbiol.110 (1979) 443–451. ArticleCASPubMed Google Scholar
Sugimura, K., and Nishihara, T., Purification, characterization, and primary structure of_Escherichia coli_ protease VII with specificity for paired basic residues: identity of protease VII and OmpT. J. Bact.170 (1988) 5625–5632. ArticleCASPubMedPubMed Central Google Scholar
Swamy, K. H. S., Chung, C. H., and Goldberg, A. L., Isolation and characterization of protease Do from_Escherichia coli_, a large serine protease containing multiple subunits. Archs Biochem. Biophys.224 (1983) 543–554 ArticleCAS Google Scholar
Tilly, K., Spence, J., and Georgopoulos, C., Modulation of stability of the_Escherichia coli_ Heat Shock Regulatory Factor sigma 32, J. Bact.171 (1989) 1585–1589. ArticleCASPubMedPubMed Central Google Scholar
Torres-Cabassa, A. S., and Gottesman, S., Capsule synthesis in_Escherichia coli_ K-12 is regulated by proteolysis. J. Bact.169 (1987) 981–989. ArticleCASPubMedPubMed Central Google Scholar
Tokunaga, M., Loranger, J. M., Wolfe, P. B., and Wu, H. C., Prolipoprotein signal peptidase in_Escherichia coli_ is distinct from the M13 precoat protein signal peptidase. J. biol. Chem.257 (1982) 9922–9925. ArticleCASPubMed Google Scholar
Tokunaga, M., Loranger, J. M., Chang, S. Y., Regue, M., Chang, S., and Wu, H. C., Identification of prolipoprotein signal peptidase and genomic organization of the Isp gene in_Escherichia coli_. J. biol. Chem.260 (1985) 5610–5616. ArticleCASPubMed Google Scholar
Tokunaga, M., Tokunaga, H., and Wu, H. C., Post-translational modification and processing of_Escherichia coli_ prolipoprotein in vitro. Proc. natl. Acad. Sci. USA_79_ (1982) 2255–2259. ArticleCASPubMedPubMed Central Google Scholar
Vaithilingam, I., and Cook, R. A., High-molecular-mass proteases (possibly proteasomes) in_Escherichia coli_ K12. Biochem. Int.19 (1989) 1297–1307. CASPubMed Google Scholar
Walker, G. C., The SOS Response of_Escherichia coli_, in:Escherichia coll and_Salmonella typhimurium_: Cellular and Molecular Biology pp. 41346–1357. Eds F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, American Society for Microbiology. Washington, D.C. 1987. Google Scholar
Waxman, L., and Goldberg, A. L., Protease La from_Escherichia coli_ hydrolyzes ATP and proteins in a linked fashion. Proc. natl Acad. Sci. USA_79_ (1982) 4883–4887. ArticleCASPubMedPubMed Central Google Scholar
Waxman, L., and Goldberg, A. L., Protease La, the_lon_ gene product, cleaves specific fluorogenic peptides in an ATP-dependent reaction. J. biol. Chem.260 (1985) 12022–12028. ArticleCASPubMed Google Scholar
Waxman, L., and Goldberg, A. L., Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science_232_ (1986) 500–503. ArticleCASPubMed Google Scholar
Wolfe, P. B., Silver, P., and Wickner, W., The isolation of homogeneous leader peptidase from a strain of_Escherichia coli_ which overproduces the enzyme. J. biol. Chem.257 (1982) 7898–7902. ArticleCASPubMed Google Scholar
Woo, K. M., Chung, W. J., Ha, D. B., Goldberg, A. L., and Chung, C. H., Protease Ti from_Escherichia coli_ requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides. J. biol. Chem.264 (1989) 2088–2091. ArticleCASPubMed Google Scholar
Yen, C., Green, L., and Miller, C. G., Degradation of intracellular protein in_Salmonella typhimurium_ peptidase mutants. J. molec. Biol.143 (1980) 21–33. ArticleCASPubMed Google Scholar
Zehnbauer, B. A., Foley, E. C., Henderson, G. W., and Markovitz, A., Identification and purification of the_lon_ + (capR+) gene product, a DNA-binding protein. Proc. natl Acad. Sci. USA_78_ (1981) 2043–2047. ArticleCASPubMedPubMed Central Google Scholar
Zwizinski, C., and Wickner, W., Purification and characterization of leader (signal) peptidase from_Escherichia coli_. J. biol. Chem.255 (1980) 7973–7977. ArticleCASPubMed Google Scholar
Zwizinski, C., Date, T. and Wickner, W., Leader peptidase is found in both the inner and outer membranes of_Escherichia coli_. J. biol. Chem.256 (1981) 3593–3597. ArticleCASPubMed Google Scholar