Development of brain damage after neonatal hypoxia-ischemia: Excitatory amino acids and cysteine (original) (raw)
References
Andiné, P., Lehmann, A., Ellrén, K., Wennberg, E., Kjellmer, I., Nielsen, T., and Hagberg, H. (1988). The excitatory amino acid antagonist kynurenic acid administered after hypoxic-ischemia in neonatal rats offers neuroprotection.Neurosci. Lett.90:208–212. PubMed Google Scholar
Andiné, P., Thordstein, M., Kjellmer, I., Nordborg, C., Thiringer, K., Wennberg, E., and Hagberg, H. (1990). Evaluation of brain damage in a rat model of neonatal hypoxic-ischemia.J. Neurosci. Methods35:253–260. PubMed Google Scholar
Andiné, P., Sandberg, M., Bågenholm, R., Lehmann, A., and Hagberg, H. (1991). Intra-and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxia-ischemia.Brain Res. Dev. Brain Res.64:115–120. PubMed Google Scholar
Ascher, P., and Nowak, L. (1987). Electrophysiological studies of NMDA receptors.Trends Neurosci.10:284–288. Google Scholar
Barks, J.D.E., and Silverstein, F.S. (1992). Excitatory amino acids contribute to the pathogenesis of perinatal hypoxic-ischemic brain injury.Brain Pathol.2:235–243. PubMed Google Scholar
Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H. (1984). Elevation of extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem.43:1369–1374. PubMed Google Scholar
Bowe, M. A., and Nadler, V. (1990). Developmental increase in the sensitivity to magnesium of NMDA receptors on CA1 hippocampal pyramidal cells.Brain Res. Dev. Brain Res.56:55–61. PubMed Google Scholar
Butcher, S.P., Bullock, R., Graham, D.I. and McCulloch, J. (1990). Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion.Stroke21:1727–1733. PubMed Google Scholar
Cherici, G., Alesiani, M., Pellegrini-Giampietro, D.E., and Moroni, F. (1991). Ischemia does not induce the release of excitotoxic amino acids from the hippocampus of newborn rats.Pediatr. Res.60:235–240. Google Scholar
Csernansky, J.G., Bardgett, M.E., Labruyere, J., Jackson, J.J., and Olney, J.W. (1993). Age-dependent neurotoxic response to L-cysteine.Soc. Neurosci. Abstr.19:1659. Google Scholar
Cuénod, M., Grandes, P., Zängerle, L., Streit, P., and Do, K.Q. (1993). Sulphur-containing amino acids in intercellular communication.Biochem. Soc. Trans.21:72–77. PubMed Google Scholar
Eimerl, S. and Schramm, M. (1992). An endogenous metal appears to regulate NMDA receptor mediated45Ca influx and toxicity in cultured cerebellar granule cells.Neurosci. Lett.137: 198–202. PubMed Google Scholar
Fagni, L., Lafon-Cazal, M., Rondouin, G., Manzoni, O., Lerner-Natoli, M. and Bockaert, J. (1994). The role of free radicals in NMDA-dependent neurotoxicity.Prog. Brain Res.103: 381–390. PubMed Google Scholar
Ferkany, J. and Coyle, J. T. (1986). Heterogenity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain.J. Neurosci. Res.16: 491–503. PubMed Google Scholar
Ford, L. M., Sanberg, P. R., Norman, A. B. and Fogelson, M. H. (1989). MK-801 prevents hippocampal neurodegeneration in neonatal hypoxic-ischemic rats.Arch. Neurol.46: 1090–1096. PubMed Google Scholar
Gill, R., Andiné, P., Hillered, L., Persson, L. and Hagberg, H. (1992). The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischemia in the rat.J. Cereb. Blood Flow Metab.12: 371–379. PubMed Google Scholar
Gilland, E., Bona, E. and Hagberg, H. (1995). NMDA-receptor dependent increase of cerebral glucose utilisation after hypoxia-ischemia in neonatal rat.J. Cereb. Blood Flow Metab.15, (suppl.1): S283. Google Scholar
Gilman, S. C., Bonner, M. J. and Pellmar, T. C. (1994). Free radicals enhance basal release of D-(3H)aspartate from cerebral cortical synaptosomes.J. Neurochem.62: 1757–1763. PubMed Google Scholar
Giulian, D. and Vaca, K. (1993). Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system.Stroke24 (suppl.1): I 84-I 90. Google Scholar
Giulian, D., Vaca, K. and Corpuz, M. (1993). Brain glia release factors with opposing actions upon neuronal survival.J. Neurosci.13:29–37. PubMed Google Scholar
Gordon, K.E., Simpson, J., Statman, D., and Silverstein, F.S. (1991). Effects of perinatal stroke on striatal amino acid efflux in rats studied with_in vivo_ microdialysis.Stroke22:928–932. PubMed Google Scholar
Hagberg, B., Hagberg, G., Olow, I., and Wendt, L. (1989). The changing panorama of cerebral palsy in Sweden V. The birth year peiod 1979–82.Acta Paediatr.78:283–290. Google Scholar
Hagberg, B., Hagberg, G., and Olow, I. (1993a). The changing panorama of cerebral palsy in Sweden. VI. Prevalence and origin during the birth year period 1983–1986.Acta Paediatr.82:387–393. PubMed Google Scholar
Hagberg, H., Lehmann, A., Sandberg, M., Nyström, B., Jacobson, I., and Hamberger, A. (1985). Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments.J. Cereb. Blood Flow Metab.5:413–419. PubMed Google Scholar
Hagberg, H., Andersson, P., Kjellmer, I., Thiringer, K., and Thordstein, M. (1987). Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia.Neurosci. Lett.78:311–317. PubMed Google Scholar
Hagberg, H., Andiné, P., and Lehmann, A. (1990). Excitatory amino acids and hypoxic-ischemic damage in the immature brain. In (A. Schurr, ed.),Cerebral Ischemia and Resuscitation., CRC-Press, Florida, pp. 115–120. Google Scholar
Hagberg, H., Thornberg, E., Blennow, M., Kjellmer, I., Lagercrantz, H., Thiringer, K.et al. (1993b). Excitatory amino acids in the cerebrospinal fluid of asphyxiated infants: relationship to hypoxic-ischemic encephalopathy.Acta Paediatr.82:925–929. PubMed Google Scholar
Hagberg, H., Gilland, E., Diemer, N. H., and Andiné, P. (1994). Hypoxia-ischemia in the neonatal rat brain: histopathology after post-treatment with NMDA and non-NMDA receptor antagonists.Biol. Neonate66:206–213. Google Scholar
Hansen, A.J., and Zeuthen, T. (1981). Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex.Acta Physiol. Scand.113:437–445. PubMed Google Scholar
Hattori, H., Morin, A.M., Schwartz, P.H., Fujikawa, D.G. and Wasterlain, C.G. (1989). Posthypoxic treatment with MK-801 reduces hypoxic-ischemic damage in the neonatal rat.Neurology39:713–718. PubMed Google Scholar
Hattori, H., and Wasterlain, C.G. (1990). Excitatory amino acids in the developing brain: ontogeny, plasticity, and excitotoxicity.Pediatr. Neurol.6:219–228. PubMed Google Scholar
Headley, P.M., and Grillner, S. (1991). Excitatory amino acids and synaptic transmission: The evidence for a physiological function.Trends Pharmacol. Sci. (special report):30–36.
Heafield, M.T., Fearn, S., Steventon, G.B., Waring, R.H., Williams, A.C. and Sturman, S.G. (1990). Plasma cysteine and sulphate levels in patients with Motor neurone, Parkinson's and Alzheimer's disease.Neurosci. Lett.110:216–220. PubMed Google Scholar
Hjalmarson, O., Hagberg, B., and Hagberg, G. (1988). Epidemiologic panorama of brain impairments and causative factors-Swedish experiences. In (Kubli_et al._, eds.),Perinatal Events and Brain Damage in Surviving Children, Springer-Verlag, Berlin, pp. 28–36. Google Scholar
Johnston, M.V., and Silverstein, F.S.W. (1987). Perinatal anoxia. In (J.T. Coyle, ed.),Animal Models of Dementia., Alan R. Liss, New York, pp. 223–251. Google Scholar
Johnston, M.V. (1993). Cellular alterations associated with perinatal asphyxia.Clin. Invest. Med.16:122–132. PubMed Google Scholar
Kato, S., Negishi, K., Mawatari, K., and Kuo, C. (1992). A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion.Neurosci.48:903–914. Google Scholar
Keller, H.J., Do, K. Q., Zollinger, M., Winterhalter, K.H., and Cuénod, M. (1989). Cysteine: depolarization-induced release from rat brain_in vitro_.J. Neurochem.52:1801–1806. PubMed Google Scholar
Landolt, H., Lutz, T.W., Langemann, H., Stäuble, D., Mendelowitsch, A., Gratzl, O., and Honegger, C.G. (1992). Extracellular antioxidants and amino acids in the cortex of the rat: monitoring by microdialysis of early ischemic changes.J. Cereb. Blood Flow Metab.12:96–102. PubMed Google Scholar
Lazarewicz, J.W., Puka-Sundvall, M., Sandberg, M., and Hagberg, H. (1995). Differential effects of N-methyl-D-aspartate on Ca2+ homeostasis in developing and adult rat striatum:In vivo microdialysis approach.Int. J. Dev. Neurosci.13:695–704. Google Scholar
Lehmann, A., Hagberg, H., Orwar, O., and Sandberg, M. (1993). Cysteine sulphinate and cysteate: mediators of cysteine toxicity in the neonatal rat brain?Eur. J. Neurosci.5:1398–1412. PubMed Google Scholar
Lipton, S.A., and Stamler, J.S. (1994). Actions of redox related congeners of nitric oxide at the NMDA receptor.Neuropharmacol.33:1229–1233. Google Scholar
Lodge, D., and Johnson, K.M. (1990). Noncompetitive excitatory amino acid receptor antagonists.Trends Pharmacol. Sci.11:81–86. PubMed Google Scholar
Lund Karlsen, R., Grofova, I., Malthe-Sørenssen, D., and Fonnum, F. (1981). Morphological changes in rat brain induced by L-cysteine injection in newborn animals.Brain Res.208:167–180. PubMed Google Scholar
Luo, D., and Vincent, S.R. (1994). NMDA-dependent nitric oxide release in the hippocampus in vivo: interactions with noradrenaline.Neuropharmacol.33:1345–1350. Google Scholar
Lyrer, P., Landolt, H., Kabiersch, A., Langemann, H., and Kaeser, H. (1991). Levels of low molecular weight scavengers in the rat brain during focal ischemia.Brain Res.567:317–320. PubMed Google Scholar
MacDermott, A.B., and Dale, N. (1987). Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids.Trends Neurosci.10:280–284. Google Scholar
Matsumoto, K., Lo, E.H., Pierce, A., Halpern, E.F., and Newcomb, R. (1995). Secondary efflux of neurotransmitter amino acid during reperfusion following transient focal ischemia in rats.J. Cerebr. Blood Flow Metab.15, (suppl. 1):S319. Google Scholar
McDonald, J.W., Silverstein, F.S., and Johnston, M.V. (1987). MK-801 protects the neonatal brain from hypoxic-ischemic damage.Eur. J. Pharmacol.140:359–361. PubMed Google Scholar
McDonald, J.W., Silverstein, F.S. and Johnston, M.V. (1988). Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system.Brain Res.459:200–203. PubMed Google Scholar
McDonald, J.W., and Johnston, M.V. (1990). Physiological and pathophysiological roles of excitatory amino acids during central nervous system development.Brain Res. Brain Res. Rev.15:41–70. PubMed Google Scholar
McDonald, J.W., Trescher, W.H., and Johnston, M.V. (1992). Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development.Brain Res.583:54–70. PubMed Google Scholar
McRae, A., Gilland, E., Bona, E., and Hagberg, H. (1995). Microglia activation after neonatal hypoxic-ischemia.Brain Res. Dev. Brain Res.84:245–252. PubMed Google Scholar
Mujsce, D.J., Christensen, M.A., and Vannucci, R.C. (1990). Cerebral blood flow and edema in perinatal hypoxic-ischemic brain damage.Pediatr. Res.27: 450–453. PubMed Google Scholar
Murphy, T.H., Miyamoto, M., Sastre, A., Schnaar, R.L. and Coyle, J.T. (1989). Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress.Neuron2:1547–1558. PubMed Google Scholar
Nath, K.A. and Salahudeen, A.K. (1993). Autooxidation of cysteine generates hydrogen peroxide: cytotoxicity and attenuation by pyruvate.Am. J. Physiol.264:F306-F314. PubMed Google Scholar
Nicholson, C., and Kraig, R.P. (1981). The behaviour of extracellular ions during spreading depression. In (T. Zeuthen, ed.),The Application of Ion-Selective Electrodes., Elsevier/North Holland, Amsterdam, pp. 217–238. Google Scholar
Ohta, K., Fukuchi, Y., Shimazu, K., Komatsumoto, S., Araki, N., Hamada, J., and Shibata, M. (1995). Glutamate release correlates with tissue level of nitric oxide in the rat striatum.J. Cereb. Blood Flow Metab.15, (suppl 1):S83. Google Scholar
Olney, J.W., and Ho, O.L. (1970). Brain damage in infant mice following oral intake of glutamate, aspartate and cysteine.Nature227:609–611. Google Scholar
Olney, J.W., Ho, O.L., and Rhee, V. (1971). Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system.Exp. Brain Res.14:61–76. PubMed Google Scholar
Olney, J.W., Ho, O.L., Rhee, V., and Schainker, B. (1972). Cysteine-induced brain damage in infant and fetal rodents.Brain Res.45:309–313. PubMed Google Scholar
Olney, J.W., Misra, C.H., and Gubareff, T. (1975). Cysteine-S-sulfate: brain damaging metabolite in sulfide oxidase deficiency.J. Neuropathol. Exp. Neurol.34:167–177. PubMed Google Scholar
Olney, J.W., Ikonomidou, C., Mosinger, J.L., and Friedrich, G. (1989). MK-801 Prevents hypobaric-ischemic neuronal degeneration in infant rat brain.J. Neurosci.9:1701–1704. PubMed Google Scholar
Olney, J.W., Zorumski, C., Price, M.T., and Labruyere, J. (1990). L-cysteine, a bicarbonate-sensitive endogenous excitotoxin.Science248:596–599. PubMed Google Scholar
Pace, J R., Martin, B.M., Paul, S.M., and Rogawski, M. (1992). High concentrations of neutral amino acids activate NMDA receptor currents in rat hippocampal neurons.Neurosci. Lett.141:97–100. PubMed Google Scholar
Patrizio, M., and Levi, G. (1994). Glutamate production by cultured microglia: differences between rat and mouse, enhancement by lipopolysaccharide and lack effect of HIV coat protein gp 120 and depolarizing agents.Neurosci. Lett.178:184–189. PubMed Google Scholar
Puka-Sundvall, M., Eriksson, P., Nilsson, M., Sandberg, M., and Lehmann, A. (1995a). Neurotoxicity of cysteine: interaction with glutamate.Brain Res.705:65–70. PubMed Google Scholar
Puka-Sundvall, M., Sandberg, M., Bona, E., Gilland, E., and Hagberg, H. (1995b). Excitatory amino acids and cysteine in relation to brain damage in a neonatal rat model of hypoxic-ischemia.J. Cereb. Blood Flow Metab.15, (suppl.1):S282. Google Scholar
Pulsinelli, W.A., Brierley, J.B., and Plum, F. (1982). Temporal profile of neoronanal damage in a model of transient forebrain ischemia.Ann. Neurol.11:491–498. PubMed Google Scholar
Represa, A., Tremblay, E., and Ben-Ari, Y. (1989). Transient increase of NMDA-binding sites in human hippocampus during development.Neurosci. Lett.99:61–66. PubMed Google Scholar
Rice, J.E., Vannucci, R.C., and Brierley, J.B. (1981). The influence of immaturity on hypoxic-ischemic brain damage in the rat.Ann. Neurol.9:131–141. PubMed Google Scholar
Schulz, J.B., Henshaw, D.R., Siwek, D., Jenkins, B.G., Ferrante, R.J., Cipolloni, P.B.et al. (1995). Involvement of free radicals in excitotoxicity_in vivo_.J. Neurochem.64:2239–2247. PubMed Google Scholar
Sharpe, L.G., Olney, J.W., Ohlendorf, C., Lyss, A., Zimmerman, M., and Gale, B. (1975). Brain damage and associated behavioral deficits following the administration of L-cysteine to infant rats.Pharmacol. Biochem. Behav.3:291–298. PubMed Google Scholar
Siesjö, B.K., and Bengtsson, F. (1989). Calcium, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression: An unifying hypothesis.J. Cereb. Blood Flow Metab.9:127–141. PubMed Google Scholar
Silverstein, F.S., Naik, B., and Simpson, J. (1991). Hypoxia-ischemia stimulates hippocampal glutamate efflux in perinatal rat brain: An_in vivo_ microdialysis study.Pediatr. Res.30:587–590. PubMed Google Scholar
Slivka, A., and Cohen, G. (1993). Brain ischemia markedly elevates levels of the neurotoxic amino acid, cysteine.Brain Res.608:33–37. PubMed Google Scholar
Szatkowski, M., and Attwell, D. (1994). Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms.Trends Neurosci.17:359–365. PubMed Google Scholar
Takagi, K., Ginsberg, M.D., Globus, M.Y., Dietrich, W.D., Martinez, E., Kraydieh, S., and Busto, R. (1993). Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology.J. Cereb. Blood Flow Metab.13:575–585. PubMed Google Scholar
Takizawa, S., Shinohara, Y., Ogawa, S., Ichimori, K., and Nakazawa, H. (1995). Relation between glutamate release and nitric oxide concentration in transient forebrain ischemia.J. Cereb. Blood Flow Metab.15 (suppl 1):S209. Google Scholar
Tremblay, E., Roisin, M.P., Represa, A., Charriaut-Marlangue, C., and Ben-Ari, Y. (1988). Transient increased density of NMDA binding sites in the developing rat hippocampus.Brain Res.461:393–396. PubMed Google Scholar
van Lookeren Campagne, M., Lucassen, P.J., Vermeulen, J.P., and Balazs, R. (1995). NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain.Eur. J. Neurosci.7:1627–1640. PubMed Google Scholar
Vannucci, R.C., and Plum, F. (1975). Pathophysiology of perinatal cerebral hypoxia-ischemia. In E. Gaull, ed.)Biology of Cerebral Dysfunction., Plenum Press, New York, pp. 1–45. Google Scholar
Vannucci, R.C., Lyons, D.T., and Vasta, F. (1988). Regional cerebral blood flow during hypoxia-ischemia in immature rats.Stroke19:245–250. PubMed Google Scholar
Vannucci, R.C. (1989). Acute perinatal brain injury: hypoxia-ischemia. In (W.R. Cohen, D.B. Acker and E.A. Friedman, eds.),Management of Labor, Aspen Publishers, Rockville, pp. 183–244. Google Scholar
Volpe, J.J. (1994).Neurology of the Newborn., W.B. Saunders Company, Philadelphia. Google Scholar
Zängerle, L., Cuenod, M., Winterhalter, K.H. and Do, K.Q. (1992). Screening of thiol compounds: depolarization-induced release of glutathione and cysteine from rat brain slices.J. Neurochem.59:181–189. PubMed Google Scholar