Topographic EEG mapping of 3/s spike-and-wave complexes during absence seizures (original) (raw)

Abstract

Topographic color mapping has recently been introduced for the study of ictal EEG manifestations of absences. We recorded 2–4 3/s spike-and-wave (sw) bursts in 12 patients with absence epilepsy, and performed a spectral analysis of the EEG under baseline conditions and during the 2 sec preceding the 3/s sw bursts. An increase in delta and theta bands was found in preseizure conditions. Moreover, the serial mapping of the sw complexes showed a different field distribution of the various components when the first sw was compared with the subsequent ones. In particular, the negative peak of the spike was mainly frontal during the first complex, with a tangentially oriented dipole, but it became better represented over the midline in the following sw, with a radially oriented dipole. We conclude that EEG changes can be detected before the onset of 3/s sw activity in absences, and that they are probably related to the strong inhibitory mechanisms acting in this type of seizure; moreover a frontal cortical mechanism seems to be prevalently active at the beginning of the seizure, which is soon captured by a cortico-subcortical process as the attack progresses.

Sommario

Il mappaggio topografico a colori è stato recentemente introdotto per lo studio delle manifestazioni critiche EEG delle assenze. In questo studio sono state registrate da 2 a 4 sequenze di punta-onda a 3/s in 12 pazienti con assenze.

È stata effettuata una analisi spettrale dell'EEG in condizioni di base e durante i 2 secondi precedenti le sequenze di punta-onda. In tali condizioni si è dimostrato un aumento delle bande teta e delta. Inoltre, il mappaggio seriale dei complessi punta-onda ha mostrato l'esistenza di diversi campi di distribuzione delle varie componenti quando il primo complesso veniva messo a confronto con quelli successivi. In particolare, il picco negativo della punta era soprattutto frontale durante il primo complesso, con un dipolo orientato tangenzialmente, ma diventava meglio rappresentato sulla linea mediana durante i complessi successivi, con un dipolo a disposizione radiale. Si conclude che cambiamenti EEG possono essere dimostrati prima dell'inizio dell'attività EEG a 3/s delle assenze.

Tali cambiamenti potrebbero essere correlati con i forti meccanismi inibitori attivi durante questo tipo di crisi; inoltre, un meccanismo corticale frontale sembra essere attivo prevalentemente all'inizio delle crisi il quale viene subito catturato da un processo cortico-sottocorticale con il progredire dell'episodio.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avoli M., Gloor P., Kostopoulos G., Gotman J.:An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic neurons. J. Neurophysiol. 50: 819–837, 1983.
    Google Scholar
  2. Bancaud J., Talairach J., Bresson M., Bonis A., Geier S., Hemon E., Buser P.:“Generalized” epileptic seizures elicited by electrical stimulation of the frontal lobe in man. Electroencephalogr. Clin. Neurophysiol 37: 275–282, 1974.
    Google Scholar
  3. Crosby E.C., Humphrey T., Lauer E.W.:Correlative Anatomy of the Nervous System. New York, Macmillan, 1972.
    Google Scholar
  4. Dondey M.:Transverse topographical analysis of petit mal discharges: diagnostic and pathogenic implications. Electroencephalogr. Clin. Neurophysiol. 55: 361–371, 1983.
    Google Scholar
  5. Fischgold H., Torubia H., Mathis P.:The electrical field of the wave and spike complex. Electroencephalogr. Clin. Neurophysiol. 7: 453, 1955.
    Google Scholar
  6. Fromm G.H., Glass J.D., Chattha A.S., Martinez A.J., Silverman M.:Antiabsence drugs and inhibitory pathways. Neurology 30: 126–131, 1980.
    Google Scholar
  7. Geller M., Geller R.:Brief amnestic effects of spike-wave discharges. Neurology 20: 1089–1095, 1970.
    Google Scholar
  8. Gibbs F.A., Gibbs E.L.: Epilepsy, In:Atlas of Electroencephalography, Vol. 2. Cambridge, Addison Wesley, 1952.
    Google Scholar
  9. Gloor P.:Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharges. Epilepsia 9: 259–263, 1968.
    Google Scholar
  10. Hughes J.R.:Long-term clinical and EEG changes in patients with epilepsy. Arch. Neurol. 42: 213–223, 1985.
    Google Scholar
  11. Hughes J.R., Miller J.K., Hughes C.A.:Topographic mapping of different types of bilateral spike-and-wave complexes. J. Epilepsy 3: 67–74, 1990.
    Google Scholar
  12. Jasper H.H., Droogleever-Fortuyn J.:Experimental studies on the functional anatomy of petit mal epilepsy. Res. Publ. Ass. Res. Nerv. Ment. Dis. 26: 272–298, 1946.
    Google Scholar
  13. Leiner H.C., Leiner A.L., Dow R.S.:Reappraising the cerebellum: What does the hindbrain contribute to the forebrain? Behav. Neurosci. 103: 998–1008, 1989.
    Google Scholar
  14. Marcus E.M., Watson C.M.:Bilateral synchronous spike wave electrographic pattern in the cat. Interaction of bilateral foci in the intact, the bilateral cortico-callosal and adiencephalic preparation. Arch. Neurol. 14: 601–610, 1966.
    Google Scholar
  15. McNair J.L., Sutin J., Tsubokawa T.:Suppression of cell firing in the substantia nigra by caudate nucleus stimulation. Exp. Neurol. 37: 395–411, 1972.
    Google Scholar
  16. Mirsky A.F., VanBuren J.M.:On the nature of the “absence” in centrencephalic epilepsy: A study of behavioral, electroencephalographic and autonomic factors. Electroencephalogr. Clin. Neurophysiol. 18: 334–348, 1965.
    Google Scholar
  17. Niedermeyer E.:Abnormal EEG patterns: Epileptic and paroxysmal. In: Niedermeyer E., Lopes da Silva F. (Eds.)Electroencephalography, 34d ed. Baltimore, Williams & Wilkins, pp. 217–240, 1993.
    Google Scholar
  18. Orren M.M.:Evoked potential studies in petit mal epilepsy. In: Cobb W.A., van Duyn H. (Eds.)Contemporary Clinical Neurophysiology. Amsterdam, Elsevier, pp. 251–257, 1978.
    Google Scholar
  19. Penfield W.:Epileptic automatism and the centrencephalic integrating system. Publ. Assoc. Res. Nerv. Ment. Dis. 30: 512–528, 1952.
    Google Scholar
  20. Penfield W., Jasper H.:Epilepsy and the functional anatomy of the human brain. Boston, Little Brown, 1954.
    Google Scholar
  21. Prince D.A., Farrel D.:Centrencephalic spikewave discharges following parenteral penicillin injection in the cat. Neurology 19: 309–310, 1969.
    Google Scholar
  22. Psatta D.M.:Control of chronic experimental focal epilepsy by feedback caudatum stimulation. Epilepsia 24: 444–454, 1983.
    Google Scholar
  23. Rodin E., Ancheta O.:Cerebral electrical fields during petit mal absences. Electroencephalogr. Clin. Neurophysiol. 66: 457–466, 1987.
    Google Scholar
  24. Siegel S.:Non Parametric Statistics: For The Behavioral Sciences. Mc Graw Hill, New York, 1956.
    Google Scholar
  25. Steriade M.:Cellular substrates of brain rhythms. In: Niedermeyer E., Lopes da Silva F. (Eds.)Electroencephalography, 3rd ed. Baltimore, Williams & Wilkins, pp.27–62, 1993.
    Google Scholar
  26. Strick P.L.:How do the basal ganglia gain access to the cortical motor areas? Behav. Brain Res. 18: 107–123, 1985.
    Google Scholar
  27. Van der Meij W., Van Huffelen A.C., Wieneke G.H., Willemse J.:Sequential EEG mapping may differentiate “epileptic” from “non-epileptic” rolandic spikes. Electroencephalogr. Clin. Neurophysiol. 82: 408–414, 1992.
    Google Scholar
  28. Ward A.A.:The cingular gyrus: Area 24. J. Neurophysiol. 43: 13–23, 1948.
    Google Scholar
  29. Weir B.:The morphology of the spike-wave complex. Electroencephalogr. Clin. Neurophysiol. 19: 284–290, 1965.
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Servizio di Neurologia, Istituto Oasi per la Ricerca sul Ritardo Mentale e l'Invecchiamento Cerebrale (IRCCS), 94018, Troina, Italy
    Ferri R.
  2. Laboratorio di Neurofisiopatologia, Ospedale “Miulli”, Acquaviva delle Fonti, Italy
    Iliceto G. & Carlucci V.

Authors

  1. Ferri R.
    You can also search for this author inPubMed Google Scholar
  2. Iliceto G.
    You can also search for this author inPubMed Google Scholar
  3. Carlucci V.
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Ferri, R., Iliceto, G. & Carlucci, V. Topographic EEG mapping of 3/s spike-and-wave complexes during absence seizures.Ital J Neuro Sci 16, 541–547 (1995). https://doi.org/10.1007/BF02282912

Download citation

Key Words