Angiogenic potential of microvessel fragments established in three-dimensional collagen gels (original) (raw)
Antonelli-Orlidge, A.; Smith, S. R.; D'Amore, P. A. Influence of pericytes on capillary endothelial cell growth. Ann. Rev. Resp. Dis. 140:1129–1131; 1989. CAS Google Scholar
Ausprunk, D. H.; Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14:53–65; 1977. ArticlePubMedCAS Google Scholar
Baird, A.; Bohlen, P. Fibroblast growth factors. In: Sporn, M. B.; Roberts, A. B., eds. Peptide growth factors and their receptors I. New York Springer-Verlag; 369–374; 1991. Google Scholar
Crum, R.; Szabo, S.; Folkman, J.: A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378; 1985. ArticlePubMedCAS Google Scholar
Enenstein, J.; Waleh, N. S.; Kramer, R. H. Basic FGF and TGF-beta differentially modulate integrin expression of human microvascular endothelial cells. Exp. Cell. Res. 203:499–503; 1992. ArticlePubMedCAS Google Scholar
Folkman, J.; Haudenschild, C. Angiogenesis in vitro. Nature 288:551–556; 1981. Article Google Scholar
Form, D. M.; Pratt, B. M.; Madri, J. A. Endothelial cell proliferation during angiogenesis: in vitro modulation by basement membrane components. Lab. Invest. 55:521–530; 1986. PubMedCAS Google Scholar
Gabbiani, G.; Schmid, E.; Winter, S., et al. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific α-type actin. Proc. Natl. Acad. Sci. USA 78:298–302; 1981. ArticlePubMedCAS Google Scholar
Gospodarowicz, D. Fibroblast growth factor and its involvement in developmental processes. Curr. Top. Dev. Biol. 24:57–93; 1990. ArticlePubMedCAS Google Scholar
Gross, J. L.; Moscatelli, D.; Jaffe, E. A., et al. Plasminogen activator and collagenase production by cultured capillary endothelial cells. J. Cell Biol. 95:974–981; 1982. ArticlePubMedCAS Google Scholar
Gross, J. L.; Moscatelli, D.; Rifkin, D. B. Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc. Natl. Acad. Sci. USA 80:2623–2627; 1983. ArticlePubMedCAS Google Scholar
Herman, I. M.; D'Amore, P. A. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 101:43–52; 1985. ArticlePubMedCAS Google Scholar
Hudlicka, O. Development of microcirculation: capillary growth and adaptation. In: Handbook of physiology. Sec. 2. The cardiovascular system—microcirculation. Vol. IV. Bethesda, MD: American Physiological Society; 1984. Google Scholar
Hudlicka, O.; Myrhage, R.; Cooper, J. Growth of capillaries in adult skeletal muscle after chronic stimulation. Bibl. Anat. 15:508–509; 1977. PubMed Google Scholar
Ingber, D. E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989. ArticlePubMedCAS Google Scholar
Klein, S.; Giancotti, F. G.; Presta, M., et al. Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell. 4:973–982; 1993. PubMedCAS Google Scholar
Maca, R. D.; Fry, G. L.; Hoak, J. C.: The effects of glucocorticoids on cultured human endothelial cells. Br. J. Haematol. 38:501–509; 1978. PubMedCAS Google Scholar
Madri, J. A.; Dreyer, B.; Pitlick, F. A., et al. The collagenous components of the subendothelium: correlation of structure and function. Lab. Invest. 43:303–315; 1980. PubMedCAS Google Scholar
Madri, J. A.; Marx, M. Matrix composition, organization and soluble factors: modulators of microvascular endothelial cell differentiation in vitro. Kidney Int. 41:560–565; 1992. ArticlePubMedCAS Google Scholar
Madri, J. A.; Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34:85–91; 1986. PubMedCAS Google Scholar
Madri, J. A.; Pratt, B.; Tucker, A. Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106:1375–1384; 1988. ArticlePubMedCAS Google Scholar
Madri, J. A.; Williams, S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–156; 1983. ArticlePubMedCAS Google Scholar
Montessano, R.; Orci, L.; Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983. Article Google Scholar
Moscatelli, D.; Jaffe, E. A.; Rifkin, D. B. Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell 20:343–351; 1980. ArticlePubMedCAS Google Scholar
Nehls, V.; Drenckhahn, D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle? Histochemistry 99:1–12; 1993. ArticlePubMedCAS Google Scholar
Nicosia, R. F.; Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. Lab. Invest. 63:115–121; 1990. PubMedCAS Google Scholar
Pratt, B. M.; Madri, J. A. Immunolocalization of type IV collagen and laminin in non-basement membrane structures of murine corneal stroma: a light and electron microscopic study. Lab. Invest. 52:650–656; 1985. PubMedCAS Google Scholar
Presta, M.; Moscatelli, D.; Joseph-Silverstein, J., et al. Purification from a human hepatoma cell line of a basic FGF like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration. Mol. Cell. Biol. 6:4060–4066; 1986. PubMedCAS Google Scholar
Shepro, D.; Morel, M. L. Pericyte physiology. FASEB J. 7:1031–1038; 1993. PubMedCAS Google Scholar
Shimada, T.; Kitamura, H.; Nakamura, M. Three-dimensional architecture of pericytes with special reference to their topographical relationship to microvascular beds. Arch. Histol. Cytol. 55:77–85; 1992. PubMed Google Scholar
Shimmenti, L. A.; Horng-Chin, Y.; Madri, J. A., et al. Platelet endothelial cell adhesion molecule, PECAM-1, modulates cell migration. J. Cell. Physiol. 153:417–428; 1992. Article Google Scholar
Slack, J. M.; Darlingtin, B. G.; Heath, J. K., et al. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326:197–200; 1987. ArticlePubMedCAS Google Scholar
Sporn, M. B.; Roberts, A. B. The multifunctional nature of peptide growth factors. Nature 332:217–219; 1988. ArticlePubMedCAS Google Scholar
Stokes, C. L.; Rupnick, M. A.; Williams, S. K., et al. Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest. 63:657–668; 1990. PubMedCAS Google Scholar
Stokes, C. L.; Weisz, P. B.; Williams, S. K., et al. Inhibition of microvascular endothelial cell migration by β-cyclodextrin tetradecasulfate and hydrocortisone. Microvasc. Res. 40:279–284; 1990. ArticlePubMedCAS Google Scholar
Wagner, R. C.; Hossler, F. E. SEM of capillary pericytes prepared by ultrasonic microdissection: evidence for the existence of a pericapillary syncytium. Anat. Rec. 234:249–254; 1992. ArticlePubMedCAS Google Scholar
Wagner, R. C.; Matthews, M. The isolation and culture of capillary endothelium from epididymal fat. Microvasc. Res. 10:286–297; 1975. ArticlePubMedCAS Google Scholar
Zetter, B. R. Migration of capillary endothelial cells is stimulated by tumor-derived factors. Nature 285:41–43; 1980. ArticlePubMedCAS Google Scholar