Making sense of the multiple MAP-2 transcripts and their role in the neuron (original) (raw)
Ainsztein and Purich D. (1984) Stimulation of tubulin polymerization by MAP-2. Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region.J. Biol. Chem.269, 28,465–28,471. Google Scholar
Albala J. S., Kalheva N., and Shafit-Zagardo B. (1993) Characterization of the transcripts encoding MAP-2b and MAP-2c.Gene136, 377–378. PubMedCAS Google Scholar
Albala J. S., Kress Y., Liu W.-K., Weidenheim K., Yen S.-H. C., and Shafit-Zagardo B. (1995) Human microtubule-associated protein-2c (MAP-2c) localizes to dendrites and axons in fetal spinal motor neurons.J. Neurochem.64, 2480–2490. PubMedCAS Google Scholar
Baas P. W. and Black M. M. (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability.J. Cell Biol.111, 495–509. PubMedCAS Google Scholar
Bass P. W., Deitch I. S., Black M. M., and Banker G. A. (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.Proc. Natl. Acad. Sci. USA85, 8335–8339. Google Scholar
Bernhardt R. and Matus A. (1984) Light and electron microscopic studies of the distribution of microtubule associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.J. Comp. Neurol.226, 203–221. PubMedCAS Google Scholar
Binder L. I., Frankfurter A., Kim H., Caceres A., Payne M. R., and Rebhun L. L. (1984) Heterogeneity of microtubule associated protein 2 during rat brain development.Proc. Natl. Acad. Sci. USA81, 5613–5617. PubMedCAS Google Scholar
Bruckenstein D. A., Lein P. J., Higgins D., and Fremeau R. T. Jr. (1990) Distinct spatial localization of specific mRNAs in cultured sympathetic neurons.Neuron5, 809–819. PubMedCAS Google Scholar
Brugg B. and Matus A. (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells.J. Cell Biol.114, 735–743. PubMedCAS Google Scholar
Bulinski J. C. and Gundersen G. G. (1991) Stabilization of post-translational modification of microtubules during cellular morphogenesis.Bioassays13, 285–293. CAS Google Scholar
Burgoyne R. D. and Cumming R. (1984) Ontogeny of microtubule-associated protein 2 in rat cerebellum: differential expression of the doublet polypeptides.Neuroscience11, 156–167. PubMedCAS Google Scholar
Burns R. G., Islam K., and Chapman R. (1984) The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2: tubulin interaction.Eur. J. Biochem.141, 609–615. PubMedCAS Google Scholar
Burton P. R. (1988) Dendrites of mitral cell neurons contain microtubules of opposite polarity.Brain Res473, 107–115. PubMedCAS Google Scholar
Caceres A., Banker G., Steward O., Binder L., and Payne M. (1984) MAP2 is localized to the dendrites of hippocampal neurons which develop in culture.Dev. Brain Res.13, 314–318. Google Scholar
Caceres A., Mautino J., and Kosik K. S. (1992) Suppression of MAP-2 in cultured cerebellar macroneurons inhibits minor neurite formation.Neuron9, 607–618. PubMedCAS Google Scholar
Cambry-Deakin M. A. and Burgoyne R. D. (1987) Posttranslational modifications of alpha-tubulin: Acetylated and detyrosinated forms in axons of rat cerebellum.J. Cell. Biol.104, 1569–1574. Google Scholar
Chamak B., Fellous A., Glowinski J., and Prochiantz A. (1987) MAP-2 expression and neuritic out-growth and branching are coregulated through region-specific neuro-astroglial interactions.J. Neurosci.7, 3163–3170. PubMedCAS Google Scholar
Chen J., Kanai Y., Cowan N., and Hirokawa N. (1992) Projection domains of MAP-2 and tau determine the spacing between microtubules in dendrites and axons.Nature360, 674–677. PubMedCAS Google Scholar
Chung W. J., Kindler S., Seidenbecher C., and Garner C. C. (1996) MAP-2a, an alternatively spliced variant of MAP-2.J. Neurochem.66, 1273–1281. PubMedCAS Google Scholar
Cleveland D. W., Hwo S. Y., and Kirschner M. W. (1977) Purification of tau, a microtubule associated protein that induces assembly of microtubules from purified tubulin.J. Mol. Biol.116, 207–225. PubMedCAS Google Scholar
Couchie D., Chabas S., Mavilia C., and Nunez J. (1996) New Forms of HMW MAP-2 are preferentially expressed in the spinal cord.FEBS Lett.388, 76–79. PubMedCAS Google Scholar
Crino P. B. and Eberwine J. (1996) Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis.Neuron17, 1171–1187. Google Scholar
Cummings R., Burgoyne R. D., and Lytton N. A. (1984) Immunofluorescence distribution of alpha tubulin, beta tubulin and microtubule-associated protein 2 during in vitro maturation of cerebellar granule cell neurones.Neuroscience12, 775–782. Google Scholar
Cunningham C. C., Leclerc N., Flanagan L. A., Lu M., Janmey P. A., and Kosik K. S. (1997) Microtubule-associated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line.J. Cell Biol.136, 845–857. PubMedCAS Google Scholar
Dammerman M., Yen S.-H., and Shafit-Zagardo B. (1989) Sequence of a human MAP-2 region sharing epitopes with Alzheimer neurofibrillary tangles.J. Neurosci. Res.24, 487–495. PubMedCAS Google Scholar
De Camilli P., Miller P. E., Navone F., Theurkauf W. E., and Vallee R. B. (1984) Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence.Neuroscience11, 817–846. PubMed Google Scholar
Dinsmore J. H. and Solomon F. (1991) Inhibition of MAP-2 expression affects both morphological and cell division phenotypes of neuronal differentiation.Cell64, 817–826. PubMedCAS Google Scholar
Doll T., Meichsner M., Riederer B. M., Honegger P., and Matus A. (1993) An isoform of microtubule associated protein-2 (MAP-2) containing four repeats of the tubulin binding motif.J. Cell Sci.106, 633–639. PubMedCAS Google Scholar
Doll T., Papandrikopoulou A., and Matus A. (1990) Nucleotide and amino acid sequences of embryonic rat MAP2c.Nucl. Acid Res.18, 361. CAS Google Scholar
Fellous A., Francon J., Lennon A. M., and Nunez J. (1977) Microtubule assembly in vitro.Eur J Biochem.78, 167–174. PubMedCAS Google Scholar
Ferhat L., Bernard A., Ribas de Pouplana L., Ben-Ari Y., and Khrestchatisky M. (1994) Structure, regional and developmental expression of rat MAP2d, a splice variant encoding four microtubule-binding domains.Neurochem. Intl.25, 327–338. CAS Google Scholar
Ferhat L., Represa A., Bernard A., Ben-Ari Y., and Khrestchatisky M. (1996) MAP2d promotes bundling and stabilization of both microtubules and microfilaments.J. Cell Sci.109, 1095–1103. PubMedCAS Google Scholar
Ferreira A. J., Busciglio J., and Caceres A. (1989) Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule-associated proteins, MAP-1a, HMW MAP-2 and tau.Dev. Brain Res.49, 215–228. CAS Google Scholar
Ferreira A. J., Busciglio J., Landa C., and Caceres A. (1990) Ganglioside-enhanced neurite growth: evidence for a selective induction of HMW MAP-2.J. Neurosci.10, 293–302. PubMedCAS Google Scholar
Fischer I., Richter-Landsbert C., and Safaei R. (1991) Regulation of microtubule-associated protein-2 (MAP-2) expression by nerve growth factor in PC12 cells.Exp. Cell Res.194, 195–201. PubMedCAS Google Scholar
Forleo P., Couchie D., Chabas S., and Nunez J. (1996) Four repeat HMW MAP2 forms in rat dorsal root ganglia.J. Molec. Neurosci.7, 193–201. PubMedCAS Google Scholar
Friedrich P. and Aszedi A. (1991) MAP2: a sensitive crosslinker and adjustable spacer in dendritic architecture.FEBS Lett.295, 5–9. PubMedCAS Google Scholar
Garner C. C. and Matus A. (1988) Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.J. Cell Biol.106, 779–783. PubMedCAS Google Scholar
Garner C. C., Brugg B., and Matus A. (1988) A70 kilodalton microtubule-associated protein (MAP2c), related to MAp2.J. Neurochem50, 609–615. PubMedCAS Google Scholar
Garner C. C., Tucker R. P., and Matus A. (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites.Nature336, 674–677. PubMedCAS Google Scholar
Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., and Shelanski M. L. (1974) A dynein-like protein associated with microtubules.FEBS Lett.40, 281–286. PubMedCAS Google Scholar
Greer K., Rosenbaum J. L. (1989) Posttranslational modifications of tubulin, in_Cell Movement_, vol. 2. (Warner F. D. and McIntosh R., eds.). Liss, New York pp. 47–66. Google Scholar
Guilleminot J., Langkopf A., and Nunez J. (1995) Identification of a new exon of the brain MAP-2.Compt. Rend. Ac. Sci.318, 304–309. Google Scholar
Gundersen G. G., Khawaja S., and Bulinski J. C. (1987) Postpolymerization dephosphorylation of alpha-tubulin: a mechanism for subcellular differentiation of microtubules.J. Cell Biol.105, 251–264. PubMedCAS Google Scholar
Gurland G. and Gundersen G. G. (1993) Protein phosphatase inhibitors induce the selective breakdown of stable microtubules in fibroblasts and epithelial cells.Proc. Natl. Acad. Sci. USA90, 8827–8831. PubMedCAS Google Scholar
Hernandez M. A., Wandosell F., and Avila J. (1987) Localization of the phosphorylation sites for different kinases in the microtubule-associated protein MAP2.J. Neurochem.48, 8–93. Google Scholar
Hirokawa N., Funakoshi T., Sato-Harada R., and Kanai Y. (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.J. Cell. Biol.132, 667–679. PubMedCAS Google Scholar
Hoshi M., Ohta K., Gotoh Y., Mori A., Murofushi H., Sakai H., and Nishida E. (1992) Mitogen-activated protein kinase catalyzed phosphorylation of microtubule associated proteins, microtubule associated protein 2 and microtubule associated protein 4, induces an alteration in their function.Eur. J. Biochem.203, 43–52. PubMedCAS Google Scholar
Johnson G. V. W. and Jope R. S. (1992) Mini-review: the role of microtubule-associated protein (MAP-2) in neuronal growth, plasticity, and degeneration.J. Neurosci. Res.33, 505–512. PubMedCAS Google Scholar
Kaech S., Ludin B., and Matus A. (1996) Cytoskeletal plasticity in cells expressing neuronal microtubules-associated proteins.Neuron17, 1189–1199. PubMedCAS Google Scholar
Kalcheva N., Rockwood J. M., Kress Y., Steiner A., and Shafit-Zagardo B. (1998) Molecular and functional characteristics of MAP-2a: Ability of MAP-2a versus MAP-2b to induce stable microtubules in COS cell.Cell Motil. Cytoskel., in press.
Kalcheva N. and Shafit-Zagardo B. (1995) Three unique 5′ untranslated regions are spliced to common coding exons of high- and low-molecular weight microtubule-associated protein-2.J. Neurochem.65, 1472–1480. PubMedCAS Google Scholar
Kalcheva N., Albala J., O'Guin K., Rubino H., Garner C., and Shafit-Zagardo B. (1995) Genomic structure of human MAP2 and characterization of additional MAP-2 isoforms.Proc. Natl. Acad. Sci. USA92, 10,894–10,898. CAS Google Scholar
Kalcheva N., Weidenheim K. M., Kress Y., and Shafit-Zagardo B. (1997) Expression of MAP-2a and other novel MAP-2 transcripts in human fetal spinal cord.J. Neurochem.68, 383–391. PubMedCAS Google Scholar
Kanai Y. and Hirokawa N. (1995) Sorting mechanisms of tau and MAP-2 in neurons: suppressed axonal transit of MAP-2 and locally regulated microtubule binding.Neuron14, 421–432. PubMedCAS Google Scholar
Keates R. A. B. and Hall R. H. (1975) Tubulin requires an accessory protein for self-assembly into microtubules.Nature257, 418–421. PubMedCAS Google Scholar
Kim H., Binder L. I., and Rosenbaum J. L. (1979) The periodic association of MAP-2 with brain microtubules in vitro.J. Cell Biol.80, 266–276. PubMedCAS Google Scholar
Kindler S. and Garner C. C. (1994) Four repeat MAP-2 isoforms in human and rat brain.Mol. Brain Res.26, 218–224. PubMedCAS Google Scholar
Kindler S., Muller R., Chung W. J., and Garner C. C. (1996) Molecular characterization of dendritically localized transcripts encoding MAP-2.Mol. Brain Res.36, 63–69. PubMedCAS Google Scholar
Kindler S., Schulz B., Goedert M., and Garner C. C. (1990) Molecular structure of microtubule-associated protein 2b and 2c from rat brain.J. Biol. Chem.265, 19,679–19,684. CAS Google Scholar
Kleiman R., Banker G., and Steward O. (1990) Differential subcellular localization of particular mRNAs in hippocampal neurons in culture.Neuron5, 821–830. PubMedCAS Google Scholar
Kleiman R., Banker G., and Steward O. (1993) Inhibition of protein synthesis alters the subcellular distribution of mRNA in neurons but does not prevent dendritic transport of RNA.Proc. Natl. Acad. Sci. USA90, 11,192–11,196. CAS Google Scholar
Knowles R. B., Sabry J. H., Martone M. E., Deerinck T. J., Ellisman M. H., Bassell G. J., and Kosik K. S. (1996) Translocation of RNA granules in living neurons.J. Neurosci.16, 7812–7820. PubMedCAS Google Scholar
Kosik K. S., Orecchio L. D., Bakalis S., Duffy L., and Neve R. (1988) Partial sequence of MAP-2 in the region of a shared epitope with Alzheimer neurofibrillary tangles.J. Neurochem.51, 587–598. PubMedCAS Google Scholar
Langkopf A., Guilleminot J., and Nunez J. (1994) Two novel HMW MAP2 variants with four microtubule-binding repeats and different projection domains.FEBS Lett.354, 259–262. PubMedCAS Google Scholar
Lewis S. A., Wang D., and Cowan N. J. (1988) Microtubule associated protein MAP-2 shares a microtubule-binding motif with tau protein.Science242, 936–939. PubMedCAS Google Scholar
Loveland K. L., Hayes T. M., Meinhardt A., Zlatic K. S., Parvinen M., de Kretser D. M., and McFarlane J. R. (1996) Microtubule-associated protein-2 in the testis: a novel site of expression.Biol. Reproduction54, 896–904. CAS Google Scholar
Mandelkow E. M., Lange G., Jagla A., Spann U., and Mandelkow E. (1988) Dynamics of the microtubule oscillator: Role of nucleotides and tubulin-MAP interactions.EMBO J.7, 357–365. PubMedCAS Google Scholar
Marsden K. M., Doll T., Ferralli J., Botteeri F., and Matus A. (1996) Transgenic expression of embryonic MAP2 in adult mouse brain: implications for neuronal polarization.J. Neurosci.16, 3265–3273. PubMedCAS Google Scholar
Matus A. (1988) MAPs: their potential role in determining neuronal morphology.Ann. Rev. Neurosci.11, 29–44. PubMedCAS Google Scholar
Matus A. (1994) MAP2, in_Microtubules_ (Hyman J. S. and Lloyd C. W., eds). Wiley, New York, pp. 155–166. Google Scholar
Matus A., Bernhardt R., and Hugh Jones T. (1981) High molecular weight microtubule-associated proteins are preferentially associated with dendritic microtubules in brain.Proc. Natl. Acad. Sci. USA78, 3010–3014. PubMedCAS Google Scholar
Morest D. K. (1962). The growth of dendrites in the mammalian brain.Z. Anat. Entwickl-Gesch.128, 290–317. Google Scholar
Murphy D. B. and Borisy G. G. (1975) Association of HMW proteins with microtubules and their role in microtubule assembly in vitro.Proc. Natl. Acad. Sci. USA72, 2696–2700. PubMedCAS Google Scholar
Neve R. L., Harris P., Kosik K. S., Kurnit D. M., and Donlon T. (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and the microtubule-associated protein 2.Mol. Brain Res.1, 271–280. CAS Google Scholar
Obar R. A., Dingus J., Bayley H., Vallee R. B. (1989) The RII subunit of cAMP-dependent protein kinase binds to a common amino-terminal domain on microtubule-associated proteins 2A, 2B, and 2C.Neuron3, 639–645. PubMedCAS Google Scholar
Okabe S. and Hirokawa N. (1989) Rapid turnover of microtubule-associated protein MAP2 in the axon revealed by microinjection of biotinylated MAP2 into cultured neurons.Proc. Natl. Acad. Sci. USA86, 4127–4131. PubMedCAS Google Scholar
Olesen O. F. (1994) Expression of low molecular weight isoforms of microtubule-associated protein 2. Phosphorylation and induction of microtubule assembly in vitro.J. Biol. Chem.269, 32,904–32,908. CAS Google Scholar
Olmsted J. B. (1986) Microtubule-associated proteins.Ann. Rev. Cell Biol.2, 421–457. PubMedCAS Google Scholar
Papandrikopoulou A., Doll T., Tucker R. P., Garner C. C., and Matus A. (1989) Embryonic AMP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2.Nature340, 650–652. PubMedCAS Google Scholar
Papasozomenos S. C. and Binder L. I. (1986) Microtubule-associated protein 2 (MAP2) is present in astrocytes of the optic nerve but absent from astrocytes of the optic tract.J. Neurosci.6, 1748–1756. PubMedCAS Google Scholar
Piperno G., LeDizet M., and Chang X. (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture.J. Cell Biol.104, 289–302. PubMedCAS Google Scholar
Quinlin E. M. and Halpain S. (1996a) Postsynaptic mechanisms for bidirectional control of MAP-2 phosphorylation by glutamate receptors.Neuron16, 357–368. Google Scholar
Quinlin E. M. and Halpain S. (1996b) Emergence of activity-dependent, bi-directional control of microtubule-associated protein MAP-2 phosphorylation during postnatal development.J. Neurosci.16, 7627–7637. Google Scholar
Riederer B., and Matus A. (1985) Differential expression of distinct microtubule-associated proteins during brain development.Proc. Natl. Acad. Sci. USA82, 6006–6009. PubMedCAS Google Scholar
Rubino H. M., Dammerman M., Shafit-Zagardo B., and Erlichman J. (1989) Localization and characterization of the binding site for the regulatory subunit of type II cAMP dependent protein kinase of MAP2.Neuron3, 631–638. PubMedCAS Google Scholar
Schulze E. and Kirschner M. (1987) Dynamic and stable populations of microtubules in cells.J. Cell Biol.104, 277–288. PubMedCAS Google Scholar
Shafit-Zagardo B., Kalcheva N., Dickson D., Davies P., and Kress Y. (1997) Distribution and subcellular localization of HMW MAP-2 expressing exon 8 in brain and spinal cord.J. Neurochem.68, 862–873. PubMedCAS Google Scholar
Sharma N., Kress Y., and Shafit-Zagardo B. (1994) Antisense MAP-2 oligonucleotides induce changes in microtubule assembly and neuritic elongation in pre-existing neurites of rat cortical neurons.Cell Motil. Cytoskel.27, 234–247. CAS Google Scholar
Sloboda R. D., Rudolph S. A., Rosenbaum J. L., and Greengard P. (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. Natl. Acad. Sci. USA 72, 177–181. PubMedCAS Google Scholar
Stumpo D. J., Graff J. M., Albert K. A., Greengard P., and Blackshear P. J. (1989) Molecular cloning, characterization, and expression of a cDNA encoding the “80- to 87-kDa” myristolated alanine-rich C kinase substrate: A major cellular substrate for protein kinase C.Proc. Natl. Acad. Sci. USA86, 4012–4016. PubMedCAS Google Scholar
Takemura R., Okabe S., Umeyama T., Kanai Y., Cowan N. J., and Hirokawa N. (1992) Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP-1B, MAP-2 or tau.J. Cell Sci.103, 953–964. PubMedCAS Google Scholar
Theurkauf W. E. and Vallee R. B. (1983) Extensive cAMP dependent and cAMP-independent phosphorylation of microtubule-associated protein 2.J. Biol. Chem.258, 7883–7886. PubMedCAS Google Scholar
Tsuyama S., Bramblett G. T., Huang K.-P., and Flavin M. (1986) Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases.J. Biol. Chem.261, 4110–4116. PubMedCAS Google Scholar
Tsuyama S., Terayama Y., and Matsayama S. (1987) Numerous phosphates of microtubule-associated protein 2 in living rat brain.J. Biol. Chem.262, 10,886–10,892. CAS Google Scholar
Tucker R. P. (1990) The roles of microtubule-associated proteins in brain morphogenesis: a review.Brain Res. Rev.15, 101–120. PubMedCAS Google Scholar
Tucker R. P. and Matus A. I. (1988) Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina.Dev. Biol.130, 423–434. PubMedCAS Google Scholar
Tucker R. P., Binder L. I., Viereck C., Hemmings B. A., and Matus A. (1988) The sequential appearance of low- and high molecular weight forms of MAP2 in the developing cerebellum.J. Neurosci.12, 4503–4512. Google Scholar
Tucker R. P., Garner C. C., and Matus A. (1989) In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain.Neuron2, 1245–1256. PubMedCAS Google Scholar
Vallee R. B. (1980) Structure and phosphorylation of microtubule associated protein 2 (MAP2).Proc. Natl. Acad. Sci. USA77, 3206–3210. PubMedCAS Google Scholar
Vallee R. B. and Bloom G. S. (1984) High molecular weight microtubule-associated proteins (MAPs).Modern Cell Biol.3, 21–75. CAS Google Scholar
Vallee R. B., Di Barmlomeis M. J., and Theurkauf W. E. (1981) A protein kinase bound to the projection portion of MAP2 (microtubule-associated protein 2).J. Cell Biol.90, 568–576. PubMedCAS Google Scholar
Viereck C., Tucker R. P., and Matus A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.J. Neurosci.9, 3547–3557. PubMedCAS Google Scholar
Voter W. A. and Erickson H. P. (1982) Electron microscopy of MAP 2 (microtubule-associated protein 2).J. Ultrastruct. Res.80, 374–382. PubMedCAS Google Scholar
Wordeman L. and Mitchison T. J. (1994) Dynamics of microtubule essembly in vivo, in_Microtubules_ (Hyams J. S. and Lloyd C. W. (eds.) Wiley-Liss, New York, pp. 287–301. Google Scholar